2,966 research outputs found

    MOND and Cosmology

    Full text link
    I review various ideas on MOND cosmology and structure formation beginning with non-relativistic models in analogy with Newtonian cosmology. I discuss relativistic MOND cosmology in the context of Bekenstein's theory and propose an alternative biscalar effective theory of MOND in which the acceleration parameter is identified with the cosmic time derivative of a matter coupling scalar field. Cosmic CDM appears in this theory as scalar field oscillations of the auxiliary "coupling strength" field.Comment: 8 pages, LaTeX, 2 figures, to appear in proceedings of IAP05 in Paris: Mass Profiles and Shapes of Cosmological Structures, G. Mamon, F. Combes, C. Deffayet and B. Fort (eds), (EDP-Sciences 2005

    On compressive radial tidal forces

    Full text link
    Radial tidal forces can be compressive instead of disruptive, a possibility that is frequently overlooked in high level physics courses. For example, radial tidal compression can emerge in extended stellar systems containing a smaller stellar cluster. For particular conditions the tidal field produced by this extended mass distribution can exert on the cluster it contains compressive effects instead of the common disruptive forces. This interesting aspect of gravity can be derived from standard relations given in many textbooks and introductory courses in astronomy and can serve as an opportunity to look closer at some aspects of gravitational physics, stellar dynamics, and differential geometry. The existence of compressive tides at the center of huge stellar systems might suggest new evolutionary scenarios for the formation of stars and primordial galactic formation processes.Comment: 22 pages, 2 figure

    H\"older equicontinuity of the integrated density of states at weak disorder

    Full text link
    H\"older continuity, Nλ(E)Nλ(E)CEEα|N_\lambda(E)-N_\lambda(E')|\le C |E-E'|^\alpha, with a constant CC independent of the disorder strength λ\lambda is proved for the integrated density of states Nλ(E)N_\lambda(E) associated to a discrete random operator H=Ho+λVH = H_o + \lambda V consisting of a translation invariant hopping matrix HoH_o and i.i.d. single site potentials VV with an absolutely continuous distribution, under a regularity assumption for the hopping term.Comment: 15 Pages, typos corrected, comments and ref. [1] added, theorems 3,4 combine

    Simplicity of eigenvalues in the Anderson model

    Full text link
    We give a simple, transparent, and intuitive proof that all eigenvalues of the Anderson model in the region of localization are simple

    A view of the narrow-line region in the infrared: active galactic nuclei with resolved fine-structure lines in the Spitzer archive

    Get PDF
    We queried the Spitzer archive for high-resolution observations with the Infrared Spectrograph of optically selected active galactic nuclei (AGN) for the purpose of identifying sources with resolved fine-structure lines that would enable studies of the narrow-line region (NLR) at mid-infrared wavelengths. By combining 298 Spitzer spectra with 6 Infrared Space Observatory spectra, we present kinematic information of the NLR for 81 z<=0.3 AGN. We used the [NeV], [OIV], [NeIII], and [SIV] lines, whose fluxes correlate well with each other, to probe gas photoionized by the AGN. We found that the widths of the lines are, on average, increasing with the ionization potential of the species that emit them. No correlation of the line width with the critical density of the corresponding transition was found. The velocity dispersion of the gas, sigma, is systematically higher than that of the stars, sigma_*, in the AGN host galaxy, and it scales with the mass of the central black hole, M_BH. Further correlations between the line widths and luminosities L, and between L and M_BH, are suggestive of a three dimensional plane connecting log(M_BH) to a linear combination of log(sigma) and log(L). Such a plane can be understood within the context of gas motions that are driven by AGN feedback mechanisms, or virialized gas motions with a power-law dependence of the NLR radius on the AGN luminosity. The M_BH estimates obtained for 35 type 2 AGN from this plane are consistent with those obtained from the M_BH-sigma_* relation.Comment: ApJ, revised to match the print versio

    A SINFONI view of circum-nuclear star-forming rings in spiral galaxies

    Full text link
    We present near-infrared (H- and K-band) SINFONI integral-field observations of the circumnuclear star formation rings in five nearby spiral galaxies. We made use of the relative intensities of different emission lines (i.e. [FeII], HeI, Brg) to age date the stellar clusters present along the rings. This qualitative, yet robust, method allows us to discriminate between two distinct scenarios that describe how star formation progresses along the rings. Our findings favour a model where star formation is triggered predominantly at the intersection between the bar major axis and the inner Lindblad resonance and then passively evolves as the clusters rotate around the ring ('Pearls on a string' scenario), although models of stochastically distributed star formation ('Popcorn' model) cannot be completely ruled out.Comment: 4 pages, 3 figures, contribution to the Proceedings of the IAU Symposium 245, "Formation and Evolution of Galaxy Bulges", held at Oxford, U.K., July 2007, Eds. M. Bureau, E. Athanassoula, B. Barbu

    Decreased Frequency of Strong Bars in S0 Galaxies: Evidence for Secular Evolution?

    Full text link
    Using data from the Near-Infrared S0 Survey (NIRS0S) of nearby, early-type galaxies, we examine the distribution of bar strengths in S0 galaxies as compared to S0/a and Sa galaxies, and as compared to previously published bar strength data for Ohio State University Bright Spiral Galaxy Survey (OSUBSGS) spiral galaxies. Bar strengths based on the gravitational torque method are derived from 2.2 micron Ks-band images for a statistical sample of 138 (98 S0, 40 S0/a,Sa) galaxies having a mean total blue magnitude <= 12.5 and generally inclined less than 65 degrees. We find that S0 galaxies have weaker bars on average than spiral galaxies in general, even compared to their closest spiral counterparts, S0/a and Sa galaxies. The differences are significant and cannot be due entirely to uncertainties in the assumed vertical scale-heights or in the assumption of constant mass-to-light ratios. Part of the difference is likely due simply to the dilution of the bar torques by the higher mass bulges seen in S0s. If spiral galaxies accrete external gas, as advocated by Bournaud & Combes, then the fewer strong bars found among S0s imply a lack of gas accretion according to this theory. If S0s are stripped former spirals, or else are evolved from former spirals due to internal secular dynamical processes which deplete the gas as well as grow the bulges, then the weaker bars and the prevalence of lenses in S0 galaxies could further indicate that bar evolution continues to proceed during and even after gas depletionComment: Accepted for publication in the Astrophysical Journal, September 2010 issue (LaTex, 29 pages + 3 figures, uses aastex.cls

    Loss of mass and stability of galaxies in MOND

    Full text link
    The self-binding energy and stability of a galaxy in MOND-based gravity are curiously decreasing functions of its center of mass acceleration towards neighbouring mass concentrations. A tentative indication of this breaking of the Strong Equivalence Principle in field galaxies is the RAVE-observed escape speed in the Milky Way. Another consequence is that satellites of field galaxies will move on nearly Keplerian orbits at large radii (100 - 500 kpc), with a declining speed below the asymptotically constant naive MOND prediction. But consequences of an environment-sensitive gravity are even more severe in clusters, where member galaxies accelerate fast: no more Dark-Halo-like potential is present to support galaxies, meaning that extended axisymmetric disks of gas and stars are likely unstable. These predicted reappearance of asymptotic Keplerian velocity curves and disappearance of "stereotypic galaxies" in clusters are falsifiable with targeted surveys.Comment: 4 pages, 2 figures, ApJ Letter

    Anisotropic Null String Cosmologies

    Get PDF
    We study string propagation in an anisotropic, cosmological background. We solve the equations of motion and the constraints by performing a perturbative expansion of the string coordinates in powers of c^2, the world-sheet speed of light. To zeroth order the string is approximated by a tensionless string (since c is proportional to the string tension T). We obtain exact, analytical expressions for the zeroth and the first order solutions and we discuss some cosmological implications.Comment: 9 pages, plain Te
    corecore