130 research outputs found
Mice with targeted disruptions in the paralogous genes hoxa-3 and hoxd-3 reveal synergistic interactions.
Journal ArticleThe Hox genes encode transcription factors which mediate the formation of the mammalian body plan along the anteroposterior and appendicular axes. Paralogous Hox genes within the separate linkage groups are closely related with respect to DNA sequence and expression, suggesting that they could have at least partially redundant functions. We showed previously that mice homozygous for independent targeted disruptions in the paralogous genes hoxa-3 and hoxd-3 had no defects in common. But our current analysis of double mutants has revealed strong, dosage-dependent interactions between these genes. We report here that in hoxd-3- homozygotes the first cervical vertebra, the atlas, is homeotically transformed to the adjacent anterior structure. Unexpectedly, in double mutants, rather than observing a more extensive homeotic transformation, the entire atlas is deleted. These observations are interpreted in terms of a model in which these Hox genes differentially regulate the proliferation rates of the appropriate sets of precursor cells
Recommended from our members
Cadherin-11 regulates synovial fibroblast behavior in health and disease
Maternal Feeding Controls Fetal Biological Clock
BACKGROUND: It is widely accepted that circadian physiological rhythms of the fetus are affected by oscillators in the maternal brain that are coupled to the environmental light-dark (LD) cycle. METHODOLOGY/PRINCIPAL FINDINGS: To study the link between fetal and maternal biological clocks, we investigated the effects of cycles of maternal food availability on the rhythms of Per1 gene expression in the fetal suprachiasmatic nucleus (SCN) and liver using a transgenic rat model whose tissues express luciferase in vitro. Although the maternal SCN remained phase-locked to the LD cycle, maternal restricted feeding phase-advanced the fetal SCN and liver by 5 and 7 hours respectively within the 22-day pregnancy. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that maternal feeding entrains the fetal SCN and liver independently of both the maternal SCN and the LD cycle. This indicates that maternal-feeding signals can be more influential for the fetal SCN and particular organ oscillators than hormonal signals controlled by the maternal SCN, suggesting the importance of a regular maternal feeding schedule for appropriate fetal molecular clockwork during pregnancy
Micro-computed tomography and histology to explore internal morphology in decapod larvae
Traditionally, the internal morphology of crustacean larvae has been studied using destructive
techniques such as dissection and microscopy. The present study combines advances in microcomputed
tomography (micro-CT) and histology to study the internal morphology of decapod larvae,
using the common spider crab (Maja brachydactyla Balss, 1922) as a model and resolving the individual
limitations of these techniques. The synergy of micro-CT and histology allows the organs to be easily
identified, revealing simultaneously the gross morphology (shape, size, and location) and histological
organization (tissue arrangement and cell identification). Micro-CT shows mainly the exoskeleton,
musculature, digestive and nervous systems, and secondarily the circulatory and respiratory systems,
while histology distinguishes several cell types and confirms the organ identity. Micro-CT resolves a
discrepancy in the literature regarding the nervous system of crab larvae. The major changes occur in
the metamorphosis to the megalopa stage, specifically the formation of the gastric mill, the shortening
of the abdominal nerve cord, the curving of the abdomen beneath the cephalothorax, and the
development of functional pereiopods, pleopods, and lamellate gills. The combination of micro-CT and
histology provides better results than either one alone.Financial support was provided by the Spanish Ministry of Economy and Competitiveness through the INIA
project (grant number RTA2011-00004-00-00) to G.G. and a pre-doctoral fellowship to D.C. (FPI-INIA)
Parvovirus B19 DNA CpG Dinucleotide Methylation and Epigenetic Regulation of Viral Expression
CpG DNA methylation is one of the main epigenetic modifications playing a role in the control of gene expression. For DNA viruses whose genome has the ability to integrate in the host genome or to maintain as a latent episome, a correlation has been found between the extent of DNA methylation and viral quiescence. No information is available for Parvovirus B19, a human pathogenic virus, which is capable of both lytic and persistent infections. Within Parvovirus B19 genome, the inverted terminal regions display all the characteristic signatures of a genomic CpG island; therefore we hypothesised a role of CpG dinucleotide methylation in the regulation of viral genome expression
Assembling a global database of child pneumonia studies to inform WHO pneumonia management algorithm: methodology and applications
BACKGROUND: The existing World Health Organization (WHO) pneumonia case management guidelines rely on clinical symptoms and signs for identifying, classifying, and treating pneumonia in children up to 5 years old. We aimed to collate an individual patient-level data set from large, high-quality pre-existing studies on pneumonia in children to identify a set of signs and symptoms with greater validity in the diagnosis, prognosis, and possible treatment of childhood pneumonia for the improvement of current pneumonia case management guidelines. METHODS: Using data from a published systematic review and expert knowledge, we identified studies meeting our eligibility criteria and invited investigators to share individual-level patient data. We collected data on demographic information, general medical history, and current illness episode, including history, clinical presentation, chest radiograph findings when available, treatment, and outcome. Data were gathered separately from hospital-based and community-based cases. We performed a narrative synthesis to describe the final data set. RESULTS: Forty-one separate data sets were included in the Pneumonia Research Partnership to Assess WHO Recommendations (PREPARE) database, 26 of which were hospital-based and 15 were community-based. The PREPARE database includes 285 839 children with pneumonia (244 323 in the hospital and 41 516 in the community), with detailed descriptions of clinical presentation, clinical progression, and outcome. Of 9185 pneumonia-related deaths, 6836 (74%) occurred in children <1 year of age and 1317 (14%) in children aged 1-2 years. Of the 285 839 episodes, 280 998 occurred in children 0-59 months old, of which 129 584 (46%) were 2-11 months of age and 152 730 (54%) were males. CONCLUSIONS: This data set could identify an improved specific, sensitive set of criteria for diagnosing clinical pneumonia and help identify sick children in need of referral to a higher level of care or a change of therapy. Field studies could be designed based on insights from PREPARE analyses to validate a potential revised pneumonia algorithm. The PREPARE methodology can also act as a model for disease database assembly
What’s retinoic acid got to do with it? Retinoic acid regulation of the neural crest in craniofacial and ocular development
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151310/1/dvg23308.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151310/2/dvg23308_am.pd
- …