1,219 research outputs found

    Field Induced Staggered Magnetization and Magnetic Ordering in Cu2(C5H12N2)2Cl4Cu_2 (C_5 H_{12} N_2)_2 Cl_4

    Full text link
    We present a 2^2D NMR investigation of the gapped spin-1/2 compound Cu2(C5H12N2)2Cl4Cu_2 (C_5 H_{12} N_2)_2 Cl_4. Our measurements reveal the presence of a magnetic field induced transverse staggered magnetization (TSM) which persists well below and above the field-induced 3D long-range magnetically ordered (FIMO) phase. The symmetry of this TSM is different from that of the TSM induced by the order parameter of the FIMO phase. Its origin, field dependence and symmetry can be explained by an intra-dimer Dzyaloshinskii-Moriya interaction, as shown by DMRG calculations on a spin-1/2 ladder. This leads us to predict that the transition into the FIMO phase is not in the BEC universality class.Comment: 4 page

    Optical sensing in microchip capillary electrophoresis by femtosecond laser written waveguides

    Get PDF
    Capillary electrophoresis separation in an on-chip integrated microfluidic channel is typically monitored with bulky, bench-top optical excitation/detection instrumentation. Optical waveguides allow confinement and transport of light in the chip directing it to a small volume of the microfluidic channel and collecting the emitted/transmitted radiation. However, the fabrication of optical waveguides or more complex photonic components integrated with the microfluidic channels is not a straightforward process, since it requires a localized increase of the refractive index of the substrate.\ud Recently, a novel technique has emerged for the direct writing of waveguides and photonic circuits in transparent glass substrates by focused femtosecond laser pulses.\ud In this work we demonstrate the integration of femtosecond laser written optical waveguides into a commercial microfluidic chip. We fabricate high quality waveguides intersecting the microchannels at arbitrary positions and use them to optically address with high spatial selectivity their content. In particular, we apply our technique to integrate optical detection in microchip capillary electrophoresis. Waveguides are inscribed at the end of the separation channel in order to optically excite the different plugs reaching that point; fluorescence from the labelled biomolecules crossing the waveguide output is efficiently collected at a 90° angle by a high numerical aperture optical fiber. The sensitivity of the integrated optical detection system was first evaluated filling the chip with a dye solution, obtaining a minimum detectable concentration of 40 pM. \ud After dynamic coating of the microchannels with an EPDMA polymer we demonstrate electrophoresis of an oligonucleotide plug with concentration down to 1 nM and wavelength-selective monitoring of on-chip separation of three fluorescent dyes. Work is in progress on separation and detection of fluorescent-labeled DNA fragments, targeting specific, diagnostically relevant regions of a template DNA, for application to the detection of chromosome aberrations

    Quantum-critical spin dynamics in quasi-one-dimensional antiferromagnets

    Get PDF
    By means of nuclear spin-lattice relaxation rate 1/T1, we follow the spin dynamics as a function of the applied magnetic field in two gapped one-dimensional quantum antiferromagnets: the anisotropic spin-chain system NiCl2-4SC(NH2)2 and the spin-ladder system (C5H12N)2CuBr4. In both systems, spin excitations are confirmed to evolve from magnons in the gapped state to spinons in the gapples Tomonaga-Luttinger-liquid state. In between, 1/T1 exhibits a pronounced, continuous variation, which is shown to scale in accordance with quantum criticality. We extract the critical exponent for 1/T1, compare it to the theory, and show that this behavior is identical in both studied systems, thus demonstrating the universality of quantum critical behavior

    Effect of scorpion toxin on the enterochromaffin-like cells in normal and Trypanosoma cruzi-infected rats: a morphological study

    Get PDF
    Intravenous injection of scorpion toxin (Tityus serrulatus) in normal and Trypanosoma cruzi infected rats did not cause ultrastructural morphologic changes on enterochromaffin-like (ECL) cells of the stomach, although it induced a significant increase of the gastric secretion. Our data seem to indicate that gastric ECL cells structure is not affected by stimulation with scorpion toxin or by acute infection with T. cruzi in the rat.A injeção intravenosa de toxina escorpiônica (Tityus serrulatus) em ratos normais e infectados pelo Trypanosoma cruzi não causou alterações morfológicas ultra-estruturáis das células enterocromaflns-like (ECL) do estómago, embora tenha induzido a aumento significativo da secreção do suco gástrico. Nossos resultados parecem indicar que a estrutura das células ECL do estómago de ratos não é afetada pela estimulação com a toxina escorpiônica ou pela infecção aguda pelo T. cruzi

    Specific heat of an S=1/2 Heisenberg ladder compound Cu2_2(C5_5H12_{12}N2_2)2_2Cl4_4 under magnetic fields

    Full text link
    Specific heat measurements down to 0.5 K have been performed on a single crystal sample of a spin-ladder like compound Cu2_{2}(C5_{5}H12_{12}N2_{2})2_{2}Cl4_{4} under magnetic fields up to 12 T. The temperature dependence of the observed data in a magnetic field below 6 T is well reproduced by numerical results calculated for the S=1/2 two-leg ladder with JrungJ_{\rm{rung}}/JlegJ_{\rm{leg}}=5. In the gapless region above 7 T (Hc1H_{\rm{c1}}), the agreement between experiment and calculation is good above about 2 K and a sharp and a round peak were observed below 2 K in a magnetic field around 10 T, but the numerical data show only a round peak, the magnitude of which is smaller than that of the observed one. The origin of the sharp peak and the difference between the experimental and numerical round peak are discussed.Comment: 14 pages, 11 figures, Submitted to PR

    Dynamical (e,2e) Studies of Tetrahydropyran and 1,4-Dioxane

    Get PDF
    We present experimental and theoretical results for the electron-impact ionization of the highest occupied molecular orbitals of tetrahydropyran and 1,4-dioxane. Using an (e,2e) technique in asymmetric coplanar kinematics, angular distributions of the slow ejected electron, with an energy of 20 eV, are measured when incident electrons at 250 eV ionize the target and scatter through an angle of either -10° or -15°. The data are compared with calculations performed at the molecular 3-body distorted wave level. Fair agreement between the theoretical model and the experimental measurements was observed. The similar structures for these targets provide key insights for assessing the limitations of the theoretical calculations. This study in turn facilitates an improved understanding of the dynamics in the ionization process

    Positron scattering from formic acid

    Get PDF
    We report on measurements of total cross sections for positron scattering from the fundamental molecule formic acid (HCOOH). In this case, the energy range of our experimental work is 0.3-50.2 eV. Our interpretation of these data was somewhat complicated by the fact that at room temperature, formic acid vapor consists of about 95% monomer and 5% dimer forms, so that the present cross sections represent an average for that ensemble. To assist us in interpreting the data, rigorous Schwinger multichannel level calculations for positron elastic scattering from the formic acid monomer were also undertaken. These calculations, incorporating an accurate model for the target polarization, are found to be in good qualitative agreement with our measured data, particularly when allowance is made for the target beam mixture (monomer versus dimer) in the experiment

    Morphometrics Parallel Genetics in a Newly Discovered and Endangered Taxon of Galápagos Tortoise

    Get PDF
    Galápagos tortoises represent the only surviving lineage of giant tortoises that exhibit two different types of shell morphology. The taxonomy of Galápagos tortoises was initially based mainly on diagnostic morphological characters of the shell, but has been clarified by molecular studies indicating that most islands harbor monophyletic lineages, with the exception of Isabela and Santa Cruz. On Santa Cruz there is strong genetic differentiation between the two tortoise populations (Cerro Fatal and La Reserva) exhibiting domed shell morphology. Here we integrate nuclear microsatellite and mitochondrial data with statistical analyses of shell shape morphology to evaluate whether the genetic distinction and variability of the two domed tortoise populations is paralleled by differences in shell shape. Based on our results, morphometric analyses support the genetic distinction of the two populations and also reveal that the level of genetic variation is associated with morphological shell shape variation in both populations. The Cerro Fatal population possesses lower levels of morphological and genetic variation compared to the La Reserva population. Because the turtle shell is a complex heritable trait, our results suggest that, for the Cerro Fatal population, non-neutral loci have probably experienced a parallel decrease in variability as that observed for the genetic data

    Experimental and theoretical cross sections for positron scattering from the pentane isomers.

    Get PDF
    Isomerism is ubiquitous in chemistry, physics, and biology. In atomic and molecular physics, in particular, isomer effects are well known in electron-impact phenomena; however, very little is known for positron collisions. Here we report on a set of experimental and theoretical cross sections for low-energy positron scattering from the three structural isomers of pentane: normal-pentane, isopentane, and neopentane. Total cross sections for positron scattering from normal-pentane and isopentane were measured at the University of Trento at incident energies between 0.1 and 50 eV. Calculations of the total cross sections, integral cross sections for elastic scattering, positronium formation, and electronic excitations plus direct ionization, as well as elastic differential cross sections were computed for all three isomers between 1 and 1000 eV using the independent atom model with screening corrected additivity rule. No definitive evidence of a significant isomer effect in positron scattering from the pentane isomers appears to be present. (C) 2016 AIP Publishing LLC

    Crystal Structure of the Sodium Cobaltate Deuterate Superconductor NaxCoO2o4xD2O (x=1/3)

    Full text link
    Neutron and x-ray powder diffraction have been used to investigate the crystal structures of a sample of the newly-discovered superconducting sodium cobaltate deuterate compound with composition Na0.31(3)CoO2o1.25(2)D2O and its anhydrous parent compound Na0.61(1)CoO2. The deuterate superconducting compound is formed by coordinating four D2O molecules (two above and two below) to each Na ion in a way that gives Na-O distances nearly equal to those in the parent compound. One deuteron of the D2O molecule is hydrogen bonded to an oxygen atom in the CoO2 plane and the oxygen atom and the second deuteron of each D2O molecule lie approximately in a plane between the Na layer and the CoO2 layers. This coordination of Na by four D2O molecules leads to ordering of the Na ions and D2O molecules. The sample studied here, which has Tc=4.5 K, has a refined composition of Na0.31(3)CoO2o1.25(2)D2O, in agreement with the expected 1:4 ratio of Na to D2O. These results show that the optimal superconducting composition should be viewed as a specific hydrated compound, not a solid solution of Na and D2O (H2O) in NaxCoO2oyD2O. Studies of physical properties vs. Na or D2O composition should be viewed with caution until it is verified that the compound remains in the same phase over the composition range of the study.Comment: 22 pages, 8 figure
    corecore