206 research outputs found

    Molecular resolvent-operator method: Electronic and nuclear dynamics in strong-field ionization

    Full text link
    We present an extension of the resolvent-operator method (ROM), originally designed for atomic systems, to extract differential photoelectron spectra (in photoelectron- and nuclear-kinetic energy) for diatomic molecules interacting with strong, ultrashort laser fields in the single active electron approximation. The method is applied to the study of H2+ photodissociation and photoionization by femtosecond laser pulses in the XUV-IR frequency range. In particular, the method is tested (i) in the perturbative regime, for few-photon absorption and bound-bound electronic transitions, and (ii) in the strong-field regime, in which multiphoton absorption and tunneling are present. In the latter case, we show how the differential ROM allows one to track the transition between both regimes. We also analyze isotopic effects by comparing the dynamics of H2+ and D2+ ionization for different pulses. © 2014 American Physical Society.This work was accomplished with an allocation of computer time from Mare Nostrum BSC and CCC-UAM and was partially supported by the MICINN Projects No. FIS2010- 15127 and No. CSD 2007-00010, ERA-Chemistry Project No. PIM2010EEC-00751, the European grants No. MC-ITN CORINF and No. MC-RG ATTOTREND, the European COST Action No. CM0702, and European Research Council Advanced Grant No. XCHEM 290853. R.E.F.S. acknowledges a Ph.D. contract from ITN CORINF and Grant No. SFRH/BD/84053/2012 from the Portuguese government. P.R. acknowledges a Juan de la Cierva contract grant from the Spanish MICIN

    Correlated electron and nuclear dynamics in strong field photoionization of H2+

    Full text link
    We present a theoretical study of H2+ ionization under strong IR femtosecond pulses by using a method designed to extract correlated (2D) photoelectron and proton kinetic energy spectra. The results show two distinct ionization mechanisms—tunnel and multiphoton ionization—in which electrons and nuclei do not share the energy from the field in the same way. Electrons produced in multiphoton ionization share part of their energy with the nuclei, an effect that shows up in the 2D spectra in the form of energy-conservation fringes similar to those observed in weak-field ionization of diatomic molecules. In contrast, tunneling electrons lead to fringes whose position does not depend on the proton kinetic energy. At high intensity, the two processes coexist and the 2D plots show a very rich behavior, suggesting that the correlation between electron and nuclear dynamics in strong field ionization is more complex than one would have anticipatedThis work was accomplished with an allocation of computer time from Mare Nostrum BSC and CCC-UAM, and was partially supported by the MICINN Projects No. FIS2010-15127, No. ACI2008-0777, and No. CSD 2007-00010, the ERA-Chemistry Project No. PIM2010EEC-00751, the European Grants No. MCITN CORINF and No. MC-RG ATTOTREND, the European COST Action CM0702, and the Advanced Grant of the European Research Council, Grant No. XCHEM 290853. R. E. F. S. acknowledges a Ph.D. contract from ITN CORINF. P. R. acknowledges a Juan de la Cierva contract grant from MICIN

    Coincidence Angular Correlation in Electron Impact Single or Double Ionisation of Atoms and Molecules

    Get PDF
    Experimental results obtained with our multi-parameter multi-coincidence spectrometer are presented for the (e,3e) double ionisation of Ar and (e,2e) single ionisation of small molecules. The (e,3e) measurements are discussed in terms of competition between the two double ionisation processes present under the chosen kinematics, and qualitative conclusions are given. The results for the ionisation of H2 and the outer orbital of N2 are compared with the predictions of the most elaborate available theoretical models for description of the molecular ionisation process. Overall reasonable agreement is observed and tentative interpretations for the discrepancies are discussed

    Modelling the chemistry and transport of bromoform within a sea breeze driven convective system during the SHIVA Campaign

    Get PDF
    We carry out a case study of the transport and chemistry of bromoform and its product gases (PGs) in a sea breeze driven convective episode on 19 November 2011 along the North West coast of Borneo during the "Stratospheric ozone: Halogen Impacts in a Varying Atmosphere" (SHIVA) campaign. We use ground based, ship, aircraft and balloon sonde observations made during the campaign, and a 3-D regional online transport and chemistry model capable of resolving clouds and convection explicitly that includes detailed bromine chemistry. The model simulates the temperature, wind speed, wind direction fairly well for the most part, and adequately captures the convection location, timing, and intensity. The simulated transport of bromoform from the boundary layer up to 12 km compares well to aircraft observations to support our conclusions. The model makes several predictions regarding bromine transport from the boundary layer to the level of convective detrainment (11 to 12 km). First, the majority of bromine undergoes this transport as bromoform. Second, insoluble organic bromine carbonyl species are transported to between 11 and 12 km, but only form a small proportion of the transported bromine. Third, soluble bromine species, which include bromine organic peroxides, hydrobromic acid (HBr), and hypobromous acid (HOBr), are washed out efficiently within the core of the convective column. Fourth, insoluble inorganic bromine species (principally Br2) are not washed out of the convective column, but are also not transported to the altitude of detrainment in large quantities. We expect that Br2 will make a larger relative contribution to the total vertical transport of bromine atoms in scenarios with higher CHBr3 mixing ratios in the boundary layer, which have been observed in other regions. Finally, given the highly detailed description of the chemistry, transport and washout of bromine compounds within our simulations, we make a series of recommendations about the physical and chemical processes that should be represented in 3-D chemical transport models (CTMs) and chemistry climate models (CCMs), which are the primary theoretical means of estimating the contribution made by CHBr3 and other very short-lived substances (VSLS) to the stratospheric bromine budget
    • …
    corecore