306 research outputs found
Long-term outcomes after reduced-intensity conditioning allogeneic stem cell transplantation for low-grade lymphoma: a survey by the French Society of Bone Marrow Graft Transplantation and Cellular Therapy (SFGM-TC)
Intestinal Epithelial Stem/Progenitor Cells Are Controlled by Mucosal Afferent Nerves
Background: The maintenance of the intestinal epithelium is of great importance for the survival of the organism. A possible nervous control of epithelial cell renewal was studied in rats and mice. Methods: Mucosal afferent nerves were stimulated by exposing the intestinal mucosa to capsaicin (1.6 mM), which stimulates intestinal external axons. Epithelial cell renewal was investigated in the jejunum by measuring intestinal thymidine kinase (TK) activity, intestinal H-3-thymidine incorporation into DNA, and the number of crypt cells labeled with BrdU. The influence of the external gut innervation was minimized by severing the periarterial nerves. Principal Findings: Luminal capsaicin increased all the studied variables, an effect nervously mediated to judge from inhibitory effects on TK activity or H-3-thymidine incorporation into DNA by exposing the mucosa to lidocaine (a local anesthetic) or by giving four different neurotransmitter receptor antagonists i.v. (muscarinic, nicotinic, neurokinin1 (NK1) or calcitonin gene related peptide (CGRP) receptors). After degeneration of the intestinal external nerves capsaicin did not increase TK activity, suggesting the involvement of an axon reflex. Intra-arterial infusion of Substance P (SP) or CGRP increased intestinal TK activity, a response abolished by muscarinic receptor blockade. Immunohistochemistry suggested presence of M3 and M5 muscarinic receptors on the intestinal stem/progenitor cells. We propose that the stem/progenitor cells are controlled by cholinergic nerves, which, in turn, are influenced by mucosal afferent neuron(s) releasing acetylcholine and/or SP and/or CGRP. In mice lacking the capsaicin receptor, thymidine incorporation into DNA and number of crypt cells labeled with BrdU was lower than in wild type animals suggesting that nerves are important also in the absence of luminal capsaicin, a conclusion also supported by the observation that atropine lowered thymidine incorporation into DNA by 60% in control rat segments. Conclusion: Enteric nerves are of importance in maintaining the intestinal epithelial barrier.Original Publication:Ove Lundgren, Mats Jodal, Madeleine Jansson, Anders T Ryberg and Lennart Svensson, Intestinal Epithelial Stem/Progenitor Cells Are Controlled by Mucosal Afferent Nerves, 2011, PLOS ONE, (6), 2, 16295.http://dx.doi.org/10.1371/journal.pone.0016295Copyright: Public Library of Science (PLoS)http://www.plos.org
Effect of Interlaminar Epidural Steroid Injection in Acute and Subacute Pain Due to Lumbar Disk Herniation: A Randomized Comparison of 2 Different Protocols
In order to assess the efficacy of epidural steroid injections (ESI) in acute and subacute pain due to lumbar spine disk herniation, we conducted a randomized trial, comparing 2 different protocols. Fourty patients with radicular pain due to L4-L5 and L5-S1 disc herniation were assigned to receive either 3 consecutive ESI every 24 hours through a spinal catheter (group A) or 3 consecutive ESI every 10 days with an epidural needle (group B). All patients had improved Oswestry Disabilty Index (ODI) and the Visual Analog Scale (VAS) for pain scores at 1 month of follow-up compared to baseline, while no significant differences were observed between the 2 groups. The scores for group B were statistically significant lower at 2 months of follow-up compared to those of group A. The improvement in the scores of group B was continuous since the mean scores at 2 months of follow up were lower compared to the respective scores at 1 month. Protocol B (3 consecutive ESI every 10 days) was found more effective in the treatment of subacute pain compared to Protocol A (3 consecutive ESI every 24 hours) with statistically significant differences in the ODI and VAS scores at 2 months of follow-up
Male Microchimerism at High Levels in Peripheral Blood Mononuclear Cells from Women with End Stage Renal Disease before Kidney Transplantation
Patients with end stage renal diseases (ESRD) are generally tested for donor chimerism after kidney transplantation for tolerance mechanism purposes. But, to our knowledge, no data are available on natural and/or iatrogenic microchimerism (Mc), deriving from pregnancy and/or blood transfusion, acquired prior to transplantation. In this context, we tested the prevalence of male Mc using a real time PCR assay for DYS14, a Y-chromosome specific sequence, in peripheral blood mononuclear cells (PBMC) from 55 women with ESRD, prior to their first kidney transplantation, and compared them with results from 82 healthy women. Male Mc was also quantified in 5 native kidney biopsies obtained two to four years prior to blood testing and in PBMC from 8 women collected after female kidney transplantation, several years after the initial blood testing. Women with ESRD showed statistically higher frequencies (62%) and quantities (98 genome equivalent cells per million of host cells, gEq/M) of male Mc in their PBMC than healthy women (16% and 0.3 gEq/M, p<0.00001 and p = 0.0005 respectively). Male Mc was increased in women with ESRD whether they had or not a history of male pregnancy and/or of blood transfusion. Three out of five renal biopsies obtained a few years prior to the blood test also contained Mc, but no correlation could be established between earlier Mc in a kidney and later presence in PBMC. Finally, several years after female kidney transplantation, male Mc was totally cleared from PBMC in all women tested but one. This intriguing and striking initial result of natural and iatrogenic male Mc persistence in peripheral blood from women with ESRD raises several hypotheses for the possible role of these cells in renal diseases. Further studies are needed to elucidate mechanisms of recruitment and persistence of Mc in women with ESRD
Acadesine Kills Chronic Myelogenous Leukemia (CML) Cells through PKC-Dependent Induction of Autophagic Cell Death
CML is an hematopoietic stem cell disease characterized by the t(9;22) (q34;q11) translocation encoding the oncoprotein p210BCR-ABL. The effect of acadesine (AICAR, 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside) a compound with known antileukemic effect on B cell chronic lymphoblastic leukemia (B-CLL) was investigated in different CML cell lines. Acadesine triggered loss of cell metabolism in K562, LAMA-84 and JURL-MK1 and was also effective in killing imatinib-resistant K562 cells and Ba/F3 cells carrying the T315I-BCR-ABL mutation. The anti-leukemic effect of acadesine did not involve apoptosis but required rather induction of autophagic cell death. AMPK knock-down by Sh-RNA failed to prevent the effect of acadesine, indicating an AMPK-independent mechanism. The effect of acadesine was abrogated by GF109203X and Ro-32-0432, both inhibitor of classical and new PKCs and accordingly, acadesine triggered relocation and activation of several PKC isoforms in K562 cells. In addition, this compound exhibited a potent anti-leukemic effect in clonogenic assays of CML cells in methyl cellulose and in a xenograft model of K562 cells in nude mice. In conclusion, our work identifies an original and unexpected mechanism by which acadesine triggers autophagic cell death through PKC activation. Therefore, in addition to its promising effects in B-CLL, acadesine might also be beneficial for Imatinib-resistant CML patients
Sensitivity of imatinib-resistant T315I BCR-ABL CML to a synergistic combination of ponatinib and forskolin treatment
Thoracic epidural analgesia: a new approach for the treatment of acute pancreatitis?
This review article analyzes, through a nonsystematic approach, the pathophysiology of acute pancreatitis (AP) with a focus on the effects of thoracic epidural analgesia (TEA) on the disease. The benefit-risk balance is also discussed. AP has an overall mortality of 1 %, increasing to 30 % in its severe form. The systemic inflammation induces a strong activation of the sympathetic system, with a decrease in the blood flow supply to the gastrointestinal system that can lead to the development of pancreatic necrosis. The current treatment for severe AP is symptomatic and tries to correct the systemic inflammatory response syndrome or the multiorgan dysfunction. Besides the removal of gallstones in biliary pancreatitis, no satisfactory causal treatment exists. TEA is widely used, mainly for its analgesic effect. TEA also induces a targeted sympathectomy in the anesthetized region, which results in splanchnic vasodilatation and an improvement in local microcirculation. Increasing evidence shows benefits of TEA in animal AP: improved splanchnic and pancreatic perfusion, improved pancreatic microcirculation, reduced liver damage, and significantly reduced mortality. Until now, only few clinical studies have been performed on the use of TEA during AP with few available data regarding the effect of TEA on the splanchnic perfusion. Increasing evidence suggests that TEA is a safe procedure and could appear as a new treatment approach for human AP, based on the significant benefits observed in animal studies and safety of use for human. Further clinical studies are required to confirm the clinical benefits observed in animal studies
Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology
Microbiota-host-diet interactions contribute to the development of metabolic diseases. Imidazole propionate is a novel microbially produced metabolite from histidine, which impairs glucose metabolism. Here, we show that subjects with prediabetes and diabetes in the MetaCardis cohort from three European countries have elevated serum imidazole propionate levels. Furthermore, imidazole propionate levels were increased in subjects with low bacterial gene richness and Bacteroides 2 enterotype, which have previously been associated with obesity. The Bacteroides 2 enterotype was also associated with increased abundance of the genes involved in imidazole propionate biosynthesis from dietary histidine. Since patients and controls did not differ in their histidine dietary intake, the elevated levels of imidazole propionate in type 2 diabetes likely reflects altered microbial metabolism of histidine, rather than histidine intake per se. Thus the microbiota may contribute to type 2 diabetes by generating imidazole propionate that can modulate host inflammation and metabolism
Combinatorial, additive and dose-dependent drug–microbiome associations
Data availability:
The source data for the figures are provided at Zenodo (https://doi.org/10.5281/zenodo.4728981). Raw shotgun sequencing data that support the findings of this study have been deposited at the ENA under accession codes PRJEB41311, PRJEB38742 and PRJEB37249 with public access. Raw spectra for metabolomics have been deposited in the MassIVE database under the accession codes MSV000088043 (UPLC–MS/MS) and MSV000088042 (GC–MS). The metadata on disease groups and drug intake are provided in Supplementary Tables 1–3. The demographic, clinical and phenotype metadata, and processed microbiome and metabolome data for French, German and Danish participants are available at Zenodo (https://doi.org/10.5281/zenodo.4674360).Code availability:
The new drug-aware univariate biomarker testing pipeline is available as an R package (metadeconfoundR; Birkner et al., manuscript in preparation) at Github (https://github.com/TillBirkner/metadeconfoundR) and at Zenodo (https://doi.org/10.5281/zenodo.4721078). The latest version (0.1.8) of this package was used to generate the data shown in this publication. The code used for multivariate analysis based on the VpThemAll package is available at Zenodo (https://doi.org/10.5281/zenodo.4719526). The phenotype and drug intake metadata, processed microbiome, and metabolome data and code resources are available for download at Zenodo (https://doi.org/10.5281/zenodo.4674360). The code for reproducing the figures is provided at Zenodo (https://doi.org/10.5281/zenodo.4728981).During the transition from a healthy state to cardiometabolic disease, patients become heavily medicated, which leads to an increasingly aberrant gut microbiome and serum metabolome, and complicates biomarker discovery1,2,3,4,5. Here, through integrated multi-omics analyses of 2,173 European residents from the MetaCardis cohort, we show that the explanatory power of drugs for the variability in both host and gut microbiome features exceeds that of disease. We quantify inferred effects of single medications, their combinations as well as additive effects, and show that the latter shift the metabolome and microbiome towards a healthier state, exemplified in synergistic reduction in serum atherogenic lipoproteins by statins combined with aspirin, or enrichment of intestinal Roseburia by diuretic agents combined with beta-blockers. Several antibiotics exhibit a quantitative relationship between the number of courses prescribed and progression towards a microbiome state that is associated with the severity of cardiometabolic disease. We also report a relationship between cardiometabolic drug dosage, improvement in clinical markers and microbiome composition, supporting direct drug effects. Taken together, our computational framework and resulting resources enable the disentanglement of the effects of drugs and disease on host and microbiome features in multimedicated individuals. Furthermore, the robust signatures identified using our framework provide new hypotheses for drug–host–microbiome interactions in cardiometabolic disease.This work was supported by the European Union’s Seventh Framework Program for research, technological development and demonstration under grant agreement HEALTH-F4-2012-305312 (METACARDIS). Part of this work was also supported by the EMBL, by the Metagenopolis grant ANR-11-DPBS-0001, by the H2020 European Research Council (ERC-AdG-669830) (to P.B.), and by grants from the Deutsche Forschungsgemeinschaft (SFB1365 to S.K.F. and L.M.; and SFB1052/3 A1 MS to M.S. (209933838)). Assistance Publique-Hôpitaux de Paris is the promoter of the clinical investigation (MetaCardis). M.-E.D. is supported by the NIHR Imperial Biomedical Research Centre and by grants from the French National Research Agency (ANR-10-LABX-46 (European Genomics Institute for Diabetes)), from the National Center for Precision Diabetic Medicine – PreciDIAB, which is jointly supported by the French National Agency for Research (ANR-18-IBHU-0001), by the European Union (FEDER), by the Hauts-de-France Regional Council (Agreement 20001891/NP0025517) and by the European Metropolis of Lille (MEL, Agreement 2019_ESR_11) and by Isite ULNE (R-002-20-TALENT-DUMAS), also jointly funded by ANR (ANR-16-IDEX-0004-ULNE), the Hauts-de-France Regional Council (20002845) and by the European Metropolis of Lille (MEL). R.J.A. is a member of the Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Bioscience. The Novo Nordisk Foundation Center for Basic Metabolic Research is an independent research institution at the University of Copenhagen partially funded by an unrestricted donation from the Novo Nordisk Foundation
- …
