1,655 research outputs found

    EgoFace: Egocentric Face Performance Capture and Videorealistic Reenactment

    No full text
    Face performance capture and reenactment techniques use multiple cameras and sensors, positioned at a distance from the face or mounted on heavy wearable devices. This limits their applications in mobile and outdoor environments. We present EgoFace, a radically new lightweight setup for face performance capture and front-view videorealistic reenactment using a single egocentric RGB camera. Our lightweight setup allows operations in uncontrolled environments, and lends itself to telepresence applications such as video-conferencing from dynamic environments. The input image is projected into a low dimensional latent space of the facial expression parameters. Through careful adversarial training of the parameter-space synthetic rendering, a videorealistic animation is produced. Our problem is challenging as the human visual system is sensitive to the smallest face irregularities that could occur in the final results. This sensitivity is even stronger for video results. Our solution is trained in a pre-processing stage, through a supervised manner without manual annotations. EgoFace captures a wide variety of facial expressions, including mouth movements and asymmetrical expressions. It works under varying illuminations, background, movements, handles people from different ethnicities and can operate in real time

    Tunable nonlinearity in atomic response to a bichromatic field

    Full text link
    Atomic response to a probe beam can be tailored, by creating coherences between atomic levels with help of another beam. Changing parameters of the control beam will change the nature of coherences and hence the nature of atomic response as well. Such change can depend upon intensity of both probe and control beams, in a nonlinear fashion. We present a situation where this nonlinearity in dependence can be precisely controlled, as to obtain different variations as desired. We also present a detailed analysis of how this nonlinear dependency arises and show that this is an interesting effect of several Coherent Population Trap(CPT) states that exist and a competition among them to trap atomic population in them.Comment: 16 pages and 6 figure

    Convection during Thermally Unstable Solidification of Pb-Sn in a Magnetic Field

    Get PDF
    Convection and macrosegregation in directionally solidified hypoeutectic Pb-38 wt pct Sn and hypereutectic Pb-64.5 wt pct Sn have been examined during upward and downward growth. Temperature fluctuations are observed along the length of the melt column during downward growth. With increasing Rayleigh number, these fluctuations change from none, to cyclic, to time periodic having multiple harmonics, and finally to random. At the higher convective driving force of 350 K temperature inversion, the transverse magnetic field decreased convective levels, strong random temperature fluctuations (flows) becoming smaller and periodic. The maximum field of 0.45 T was unable to completely eliminate convection. For the lower convective driving force of 150 K temperature inversion, the 0.05 T magnetic field decreased flows, and at 0.15 T, the field caused a dramatic decrease in the characteristic frequency of the temperature fluctuations, indicating a change in the nature of the flow, the waveform of the temperature fluctuations changing from sinusoidal to a pulsed wave. Temperature fluctuations and time delays between thermocouples were used to estimate flow velocities. Irrespective of the convection in the bulk melt (ahead of the mushy zone), longitudinal macrosegregation occurs only if the interdendritic melt mixes with the bulk melt

    Underground Cordon by Microorganisms-Part-III Role of Soil Inhabiting Actinomycetes

    Get PDF
    Certain strains of soil inhabiting actinomycetes were found to substantially corrode aluminium alloy (54-S) which has bscn found tobe more resistant to bacterial or fungal corrosion in our earlier studies.These strains did not produce any corrosion on the mild steel and galvanised iron panels which were heavily corroded by bacteria and fungi. The corrosive isolates have been partialiy characterised after their isolation and purification. The extent of corrosion caused by eachstrain has been determined

    Effect of Crucible Diameter Reduction on the Convection, Macrosegregation, and Dendritic Morphology During Directional Solidification of Pb-2.2 Wt Pct Sb Alloy

    Get PDF
    The Pb-2.2 wt pct Sb alloy has been directionally solidified in 1, 2-, 3-, and 7-mm-diameter crucibles with planar and dendritic liquid-solid interface morphology. For plane front solidification, the experimentally observed macrosegregation along the solidified length follows the relationship proposed by Favier.([17,18]) Application of a 0.4 T transverse magnetic field has no effect on the extent of convection. Reducing the ampoule diameter appears to decrease the extent of convection. However, extensive convection is still present even in the 1-mm-diameter crucible. An extrapolation of the observed behavior indicates that nearly diffusive transport conditions require ampoules that are about 40 mum in diameter. Reduction of the crucible diameter does not appear to have any significant effect on the primary dendrite spacing. However, it results in considerable distortion of the dendrite morphology and ordering. This is especially true for the 1-mm-diameter samples

    Proposal to stabilize and detect half-quantum vortices in strontium ruthenate thin films: Non-Abelian braiding statistics of vortex matter in a px+ipy{p_x}+i{p_y} superconductor

    Full text link
    We propose a simple way to stabilize half-quantum vortices in superconducting strontium ruthenate, assuming the order parameter is of chiral px+ipyp_x + ip_y symmetry, as is suggested by recent experiments. The method, first given by Salomaa and Volovik in the context of Helium-3, is very naturally suited for strontium ruthenate, which has a layered, quasi-two-dimensional, perovskite crystal structure. We propose possible experiments to detect their non abelian-braiding statistics. These experiments are of potential importance for topological quantum computation

    Effect of Crucible Diameter Reduction on the Convection, Macrosegregation, and Dendritic Morphology During Directional Solidification of Pb-2.2 Wt Pct Sb Alloy

    Get PDF
    The Pb-2.2 wt pct Sb alloy has been directionally solidified in 1, 2-, 3-, and 7-mm-diameter crucibles with planar and dendritic liquid-solid interface morphology. For plane front solidification, the experimentally observed macrosegregation along the solidified length follows the relationship proposed by Favier.([17,18]) Application of a 0.4 T transverse magnetic field has no effect on the extent of convection. Reducing the ampoule diameter appears to decrease the extent of convection. However, extensive convection is still present even in the 1-mm-diameter crucible. An extrapolation of the observed behavior indicates that nearly diffusive transport conditions require ampoules that are about 40 mum in diameter. Reduction of the crucible diameter does not appear to have any significant effect on the primary dendrite spacing. However, it results in considerable distortion of the dendrite morphology and ordering. This is especially true for the 1-mm-diameter samples

    Learning Complete {3D} Morphable Face Models from Images and Videos

    Get PDF
    Most 3D face reconstruction methods rely on 3D morphable models, which disentangle the space of facial deformations into identity geometry, expressions and skin reflectance. These models are typically learned from a limited number of 3D scans and thus do not generalize well across different identities and expressions. We present the first approach to learn complete 3D models of face identity geometry, albedo and expression just from images and videos. The virtually endless collection of such data, in combination with our self-supervised learning-based approach allows for learning face models that generalize beyond the span of existing approaches. Our network design and loss functions ensure a disentangled parameterization of not only identity and albedo, but also, for the first time, an expression basis. Our method also allows for in-the-wild monocular reconstruction at test time. We show that our learned models better generalize and lead to higher quality image-based reconstructions than existing approaches

    i3DMM: Deep Implicit 3D Morphable Model of Human Heads

    Get PDF
    We present the first deep implicit 3D morphable model (i3DMM) of full heads. Unlike earlier morphable face models it not only captures identity-specific geometry, texture, and expressions of the frontal face, but also models the entire head, including hair. We collect a new dataset consisting of 64 people with different expressions and hairstyles to train i3DMM. Our approach has the following favorable properties: (i) It is the first full head morphable model that includes hair. (ii) In contrast to mesh-based models it can be trained on merely rigidly aligned scans, without requiring difficult non-rigid registration. (iii) We design a novel architecture to decouple the shape model into an implicit reference shape and a deformation of this reference shape. With that, dense correspondences between shapes can be learned implicitly. (iv) This architecture allows us to semantically disentangle the geometry and color components, as color is learned in the reference space. Geometry is further disentangled as identity, expressions, and hairstyle, while color is disentangled as identity and hairstyle components. We show the merits of i3DMM using ablation studies, comparisons to state-of-the-art models, and applications such as semantic head editing and texture transfer. We will make our model publicly available
    corecore