106 research outputs found

    Measuring Topological Chaos

    Full text link
    The orbits of fluid particles in two dimensions effectively act as topological obstacles to material lines. A spacetime plot of the orbits of such particles can be regarded as a braid whose properties reflect the underlying dynamics. For a chaotic flow, the braid generated by the motion of three or more fluid particles is computed. A ``braiding exponent'' is then defined to characterize the complexity of the braid. This exponent is proportional to the usual Lyapunov exponent of the flow, associated with separation of nearby trajectories. Measuring chaos in this manner has several advantages, especially from the experimental viewpoint, since neither nearby trajectories nor derivatives of the velocity field are needed.Comment: 4 pages, 6 figures. RevTeX 4 with PSFrag macro

    Flow convergence caused by a salinity minimum in a tidal channel

    Get PDF
    © 2006 The Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The definitive version was published in San Francisco Estuary and Watershed Science 4 (2006): Issue 3, Article 1.Residence times of dissolved substances and sedimentation rates in tidal channels are affected by residual (tidally averaged) circulation patterns. One influence on these circulation patterns is the longitudinal density gradient. In most estuaries the longitudinal density gradient typically maintains a constant direction. However, a junction of tidal channels can create a local reversal (change in sign) of the density gradient. This can occur due to a difference in the phase of tidal currents in each channel. In San Francisco Bay, the phasing of the currents at the junction of Mare Island Strait and Carquinez Strait produces a local salinity minimum in Mare Island Strait. At the location of a local salinity minimum the longitudinal density gradient reverses direction. This paper presents four numerical models that were used to investigate the circulation caused by the salinity minimum: (1) A simple one-dimensional (1D) finite difference model demonstrates that a local salinity minimum is advected into Mare Island Strait from the junction with Carquinez Strait during flood tide. (2) A three-dimensional (3D) hydrodynamic finite element model is used to compute the tidally averaged circulation in a channel that contains a salinity minimum (a change in the sign of the longitudinal density gradient) and compares that to a channel that contains a longitudinal density gradient in a constant direction. The tidally averaged circulation produced by the salinity minimum is characterized by converging flow at the bed and diverging flow at the surface, whereas the circulation produced by the constant direction gradient is characterized by converging flow at the bed and downstream surface currents. These velocity fields are used to drive both a particle tracking and a sediment transport model. (3) A particle tracking model demonstrates a 30 percent increase in the residence time of neutrally buoyant particles transported through the salinity minimum, as compared to transport through a constant direction density gradient. (4) A sediment transport model demonstrates increased deposition at the near-bed null point of the salinity minimum, as compared to the constant direction gradient null point. These results are corroborated by historically noted large sedimentation rates and a local maximum of selenium accumulation in clams at the null point in Mare Island Strait.The authors acknowledge support for this research from the California Department of Fish and Game, the California Coastal Conservancy, the U.S. Fish and Wildlife Service Coastal Program, and the U.S. Geological Survey Federal/State Cooperative and Priority Ecosystem Science Programs

    Anisotropic flow of strange particles at RHIC

    Full text link
    Space-time picture of the anisotropic flow evolution in Au+Au collisions at BNL RHIC is studied for strange hadrons within the microscopic quark-gluon string model. The directed flow of both mesons and hyperons demonstrates wiggle structure with the universal antiflow slope at |y| < 2 for minimum bias events. This effect increases as the reaction becomes more peripheral. The development of both components of the anisotropic flow is closely related to particle freeze-out. Hadrons are emitted continuously, and different hadronic species are decoupled from the system at different times. These hadrons contribute differently to the formation and evolution of the elliptic flow, which can be decomposed onto three components: (i) flow created by hadrons emitted from the surface at the onset of the collision; (ii) flow produced by jets; (iii) hydrodynamic flow. Due to these features, the general trend in elliptic flow formation is that the earlier mesons are frozen, the weaker their elliptic flow. In contrast, baryons frozen at the end of the system evolution have stronger v2.Comment: proceedings of the conference SQM2004 (September 2004, Cape Town, South Africa

    On Invariant Notions of Segre Varieties in Binary Projective Spaces

    Full text link
    Invariant notions of a class of Segre varieties \Segrem(2) of PG(2^m - 1, 2) that are direct products of mm copies of PG(1, 2), mm being any positive integer, are established and studied. We first demonstrate that there exists a hyperbolic quadric that contains \Segrem(2) and is invariant under its projective stabiliser group \Stab{m}{2}. By embedding PG(2^m - 1, 2) into \PG(2^m - 1, 4), a basis of the latter space is constructed that is invariant under \Stab{m}{2} as well. Such a basis can be split into two subsets whose spans are either real or complex-conjugate subspaces according as mm is even or odd. In the latter case, these spans can, in addition, be viewed as indicator sets of a \Stab{m}{2}-invariant geometric spread of lines of PG(2^m - 1, 2). This spread is also related with a \Stab{m}{2}-invariant non-singular Hermitian variety. The case m=3m=3 is examined in detail to illustrate the theory. Here, the lines of the invariant spread are found to fall into four distinct orbits under \Stab{3}{2}, while the points of PG(7, 2) form five orbits.Comment: 18 pages, 1 figure; v2 - version accepted in Designs, Codes and Cryptograph

    Equation of state at FAIR energies and the role of resonances

    Full text link
    Two microscopic models, UrQMD and QGSM, are used to extract the effective equation of state (EOS) of locally equilibrated nuclear matter produced in heavy-ion collisions at energies from 11.6 AGeV to 160 AGeV. Analysis is performed for the fixed central cubic cell of volume V = 125 fm**3 and for the expanding cell that followed the growth of the central area with uniformly distributed energy. For all reactions the state of local equilibrium is nearly approached in both models after a certain relaxation period. The EOS has a simple linear dependence P/e = c_s**2 with 0.12 < c_s**2 < 0.145. Heavy resonances are shown to be responsible for deviations of the c_s**2(T) and c_s**2(mu_B) from linear behavior. In the T-mu_B and T-mu_S planes the EOS has also almost linear dependence and demonstrates kinks related not to the deconfinement phase transition but to inelastic freeze-out in the system.Comment: SQM2008 proceedings, 6 page

    Microscopic models and effective equation of state in nuclear collisions at FAIR energies

    Full text link
    Two microscopic models, UrQMD and QGSM, were employed to study the formation of locally equilibrated hot and dense nuclear matter in heavy-ion collisions at energies from 11.6 AGeV to 160 AGeV. Analysis was performed for the fixed central cubic cell of volume V = 125 fm**3 and for the expanding cell which followed the growth of the central area with uniformly distributed energy. To decide whether or not the equilibrium was reached, results of the microscopic calculations were compared to that of the statistical thermal model. Both dynamical models indicate that the state of kinetic, thermal and chemical equilibrium is nearly approached at any bombarding energy after a certain relaxation period. The higher the energy, the shorter the relaxation time. Equation of state has a simple linear dependence P = a(sqrt{s})*e, where a = c_s**2 is the sound velocity squared. It varies from 0.12 \pm 0.01 at E_{lab} = 11.6 AGeV to 0.145 \pm 0.005 at E_{lab} = 160 AGeV. Change of the slope in a(sqrt{s}) behavior occurs at E_{lab} = 40 AGeV and can be assigned to the transition from baryon-rich to meson-dominated matter. The phase diagrams in the T - mu_B plane show the presence of kinks along the lines of constant entropy per baryon. These kinks are linked to the inelastic (i.e. chemical) freeze-out in the system.Comment: 14 pages, REVTE

    Open charm and charmonium production at relativistic energies

    Full text link
    We calculate open charm and charmonium production in Au+AuAu+Au reactions at s\sqrt{s} = 200 GeV within the hadron-string dynamics (HSD) transport approach employing open charm cross sections from pNpN and πN\pi N reactions that are fitted to results from PYTHIA and scaled in magnitude to the available experimental data. Charmonium dissociation with nucleons and formed mesons to open charm (D+DˉD+\bar{D} pairs) is included dynamically. The 'comover' dissociation cross sections are described by a simple phase-space model including a single free parameter, i.e. an interaction strength M02M_0^2, that is fitted to the J/ΨJ/\Psi suppression data for Pb+PbPb+Pb collisions at SPS energies. As a novel feature we implement the backward channels for charmonium reproduction by DDˉD \bar{D} channels employing detailed balance. From our dynamical calculations we find that the charmonium recreation is comparable to the dissociation by 'comoving' mesons. This leads to the final result that the total J/ΨJ/\Psi suppression at s\sqrt{s} = 200 GeV as a function of centrality is slightly less than the suppression seen at SPS energies by the NA50 Collaboration, where the 'comover' dissociation is substantial and the backward channels play no role. Furthermore, even in case that all directly produced J/ΨJ/\Psi mesons dissociate immediately (or are not formed as a mesonic state), a sizeable amount of charmonia is found asymptotically due to the D+DˉJ/ΨD+\bar{D} \to J/\Psi + meson channels in central collisions of Au+AuAu+Au at s\sqrt{s} = 200 GeV which, however, is lower than the J/ΨJ/\Psi yield expected from binary scaling of pppp collisions.Comment: 42 pages, including 14 eps figures, discussions extended and references added, to be published in Phys. Rev.

    A call for action to establish a research agenda for building a future health workforce in Europe

    Get PDF
    This Call for Action is closely linked to the European Public Health Association (EUPHA) and its new section ‘Health Workforce Research’. The idea was first developed during a pre-conference and two workshops at the EUPHA Conference in November 2016 in Vienna and further investigated at the EUPHA Conference in November 2017. We wish to thank all participants for inspiring discussions and for sharing ideas and knowledge.Peer reviewedPublisher PD
    corecore