35 research outputs found
Unity in defence: honeybee workers exhibit conserved molecular responses to diverse pathogens
This is the final version of the article. Available from the publisher via the DOI in this record.Background: Organisms typically face infection by diverse pathogens, and hosts are thought to have developed specific responses to each type of pathogen they encounter. The advent of transcriptomics now makes it possible to test this hypothesis and compare host gene expression responses to multiple pathogens at a genome-wide scale. Here, we performed a meta-analysis of multiple published and new transcriptomes using a newly developed bioinformatics approach that filters genes based on their expression profile across datasets. Thereby, we identified common and unique molecular responses of a model host species, the honey bee (Apis mellifera), to its major pathogens and parasites: the Microsporidia Nosema apis and Nosema ceranae, RNA viruses, and the ectoparasitic mite Varroa destructor, which transmits viruses.
Results:
We identified a common suite of genes and conserved molecular pathways that respond to all investigated pathogens, a result that suggests a commonality in response mechanisms to diverse pathogens. We found that genes differentially expressed after infection exhibit a higher evolutionary rate than non-differentially expressed genes. Using our new bioinformatics approach, we unveiled additional pathogen-specific responses of honey bees; we found that apoptosis appeared to be an important response following microsporidian infection, while genes from the immune signalling pathways, Toll and Imd, were differentially expressed after Varroa/virus infection. Finally, we applied our bioinformatics approach and generated a gene co-expression network to identify highly connected (hub) genes that may represent important mediators and regulators of anti-pathogen responses.
Conclusions:
Our meta-analysis generated a comprehensive overview of the host metabolic and other biological processes that mediate interactions between insects and their pathogens. We identified key host genes and pathways that respond to phylogenetically diverse pathogens, representing an important source for future functional studies as well as offering new routes to identify or generate pathogen resilient honey bee stocks. The statistical and bioinformatics approaches that were developed for this study are broadly applicable to synthesize information across transcriptomic datasets. These approaches will likely have utility in addressing a variety of biological questions.This article is a joint effort of the working group TRANSBEE and an
outcome of two workshops kindly supported by sDiv, the Synthesis
Centre for Biodiversity Sciences within the German Centre for Integrative
Biodiversity Research (iDiv) Halle-Jena-Leipzig, funded by the German Science
Foundation (FZT 118). New datasets were performed thanks to the Insect
Pollinators Initiative (IPI grant BB/I000100/1 and BB/I000151/1), with participation
of the UK-USA exchange funded by the BBSRC BB/I025220/1 (datasets #4,
11 and 14). The IPI is funded jointly by the Biotechnology and Biological
Sciences Research Council, the Department for Environment, Food and Rural
Affairs, the Natural Environment Research Council, the Scottish Government
and the Wellcome Trust, under the Living with Environmental Change
Partnershi
Predictive Markers of Honey Bee Colony Collapse
Across the Northern hemisphere, managed honey bee colonies, Apis mellifera, are currently affected by abrupt depopulation during winter and many factors are suspected to be involved, either alone or in combination. Parasites and pathogens are considered as principal actors, in particular the ectoparasitic mite Varroa destructor, associated viruses and the microsporidian Nosema ceranae. Here we used long term monitoring of colonies and screening for eleven disease agents and genes involved in bee immunity and physiology to identify predictive markers of honeybee colony losses during winter. The data show that DWV, Nosema ceranae, Varroa destructor and Vitellogenin can be predictive markers for winter colony losses, but their predictive power strongly depends on the season. In particular, the data support that V. destructor is a key player for losses, arguably in line with its specific impact on the health of individual bees and colonies
Synergistic Parasite-Pathogen Interactions Mediated by Host Immunity Can Drive the Collapse of Honeybee Colonies
The health of the honeybee and, indirectly, global crop production are threatened by several biotic and abiotic factors, which play a poorly defined role in the induction of widespread colony losses. Recent descriptive studies suggest that colony losses are often related to the interaction between pathogens and other stress factors, including parasites. Through an integrated analysis of the population and molecular changes associated with the collapse of honeybee colonies infested by the parasitic mite Varroa destructor, we show that this parasite can de-stabilise the within-host dynamics of Deformed wing virus (DWV), transforming a cryptic and vertically transmitted virus into a rapidly replicating killer, which attains lethal levels late in the season. The de-stabilisation of DWV infection is associated with an immunosuppression syndrome, characterized by a strong down-regulation of the transcription factor NF-κB. The centrality of NF-κB in host responses to a range of environmental challenges suggests that this transcription factor can act as a common currency underlying colony collapse that may be triggered by different causes. Our results offer an integrated account for the multifactorial origin of honeybee losses and a new framework for assessing, and possibly mitigating, the impact of environmental challenges on honeybee health
Characterisation of the British honey bee metagenome
Numerous microbial symbionts, both commensal and pathogenic, are associated with honey bees. Here, the authors genomically characterize this ‘metagenome’ of the British honey bee, identifying a diversity of commensal microbes as well as known and putative pathogen
Existing Infection Facilitates Establishment and Density of Malaria Parasites in Their Mosquito Vector
Very little is known about how vector-borne pathogens interact within their vector and how this impacts transmission. Here we show that mosquitoes can accumulate mixed strain malaria infections after feeding on multiple hosts. We found that parasites have a greater chance of establishing and reach higher densities if another strain is already present in a mosquito. Mixed infections contained more parasites but these larger populations did not have a detectable impact on vector survival. Together these results suggest that mosquitoes taking multiple infective bites may disproportionally contribute to malaria transmission. This will increase rates of mixed infections in vertebrate hosts, with implications for the evolution of parasite virulence and the spread of drug-resistant strains. Moreover, control measures that reduce parasite prevalence in vertebrate hosts will reduce the likelihood of mosquitoes taking multiple infective feeds, and thus disproportionally reduce transmission. More generally, our study shows that the types of strain interactions detected in vertebrate hosts cannot necessarily be extrapolated to vectors
Varroa destructor is an effective vector of Israeli acute paralysis virus in the honeybee, Apis mellifera
The Israeli acute paralysis virus (IAPV) is a significant marker of honeybee colony collapse disorder (CCD). In the present work, we provide the first evidence that Varroa destructor is IAPV replication-competent and capable of vectoring IAPV in honeybees. The honeybees became infected with IAPV after exposure to Varroa mites that carried the virus. The copy number of IAPV in bees was positively correlated with the density of Varroa mites and time period of exposure to Varroa mites. Further, we showed that the mite-virus association could possibly reduce host immunity and therefore promote elevated levels of virus replication. This study defines an active role of Varroa mites in IAPV transmission and sheds light on the epidemiology of IAPV infection in honeybees