50 research outputs found

    Closing the compliance gap in marine protected areas with human behavioural sciences

    Get PDF
    Advocates, practitioners and policy-makers continue to use and advocate for marine protected areas (MPAs) to meet global ocean protection targets. Yet many of the worlds MPAs, and especially no-take MPAs, are plagued by poaching and ineffective governance. Using a global dataset on coral reefs as an example, we quantify the potential ecological gains of governing MPAs to increase compliance, which we call the ‘compliance gap’. Using ecological simulations based on model posteriors of joint Bayesian hierarchical models, we demonstrate how increased compliance in no-take MPAs could nearly double target fish biomass (91% increases in median fish biomass), and result in a 292% higher likelihood of encountering top predators. Achieving these gains and closing the compliance gap necessitates a substantial shift in approach and practice to go beyond optimizing enforcement, and towards governing for compliance. This will require engaging and integrating a broad suite of actors, principles, and practices across three key domains: (i)) harnessing social influence, (ii) integrating equity principles, and (iii) aligning incentives through market-based instruments. Empowering and shaping communication between actor groups (e.g., between fishers, practitioners, and policy-makers) using theoretically underpinned approaches from the behavioural sciences is one of the most essential, but often underserved aspects of governing MPAs. We therefore close by highlighting how this cross-cutting tool could be further integrated in governance to bolster high levels of compliance in MPAs

    Hemocompatibility of Silicon-Based Substrates for Biomedical Implant Applications

    Get PDF
    Silicon membranes with highly uniform nanopore sizes fabricated using microelectromechanical systems (MEMS) technology allow for the development of miniaturized implants such as those needed for renal replacement therapies. However, the blood compatibility of silicon has thus far been an unresolved issue in the use of these substrates in implantable biomedical devices. We report the results of hemocompatibility studies using bare silicon, polysilicon, and modified silicon substrates. The surface modifications tested have been shown to reduce protein and/or platelet adhesion, thus potentially improving biocompatibility of silicon. Hemocompatibility was evaluated under four categories—coagulation (thrombin–antithrombin complex, TAT generation), complement activation (complement protein, C3a production), platelet activation (P-selectin, CD62P expression), and platelet adhesion. Our tests revealed that all silicon substrates display low coagulation and complement activation, comparable to that of Teflon and stainless steel, two materials commonly used in medical implants, and significantly lower than that of diethylaminoethyl (DEAE) cellulose, a polymer used in dialysis membranes. Unmodified silicon and polysilicon showed significant platelet attachment; however, the surface modifications on silicon reduced platelet adhesion and activation to levels comparable to that on Teflon. These results suggest that surface-modified silicon substrates are viable for the development of miniaturized renal replacement systems

    Using systems thinking and open innovation to strengthen aquaculture policy for the United Nations Sustainable Development Goals

    Get PDF
    In a world of nine billion people and a widening income gap between the rich and poor, it is time to rethink how aquaculture can strengthen its contribution to the second UN Sustainable Development Goal (SDG) of zero hunger in our generation. The disparity in the level of sustainable aquaculture development at present, between and within countries, especially regarding human access to farmed aquatic food remains highly variable across the globe. This paper offers a fresh look at the opportunities from using systems thinking and new open innovation measuring tools to grow sustainable aquaculture. Political will in many nations is the main constraint to aquaculture in realising its potential as an: accessible source of micronutrients and nutritious protein; aid to meeting conservation goals; economic prosperity generator where benefits extend to locals and provider of indirect social benefits such as access to education and well‐being, among others. Resources to enable strong partnerships (SDG 17) between academia, civic society, government and industry should be prioritised by governments to build a sustainable aquatic food system, accessible to all, forever

    Protected areas preserve natural behaviour of a targeted fish species on coral reefs

    No full text
    Marine protected areas are increasingly being implemented to attain a variety of conservation and fisheries management objectives. Although rarely considered, protection of targeted species within these areas may also conserve behaviours (e.g. boldness) that are often the first removed by human exploitation. Here we examine fish behaviour in fished, no-take, and no-entry management zones for a highly targeted reef fish species (coral trout; Plectropomus leopardus) on coral reefs in two regions of the Great Barrier Reef Marine Park, Australia. Using three behavioural metrics (flight-initiation distance, pre-flight behaviour, and escape trajectories), we demonstrate how protected areas, particularly no-entry zones, can effectively conserve naive or bold behavioural traits in fish populations. Flight-initiation distance was consistently highest in fished zones, but the effects of protection afforded by no-take and no-entry zones varied by study region. Flight-initiation distance was consistently higher for fish above the minimum legal retention size limit, except in no-entry zones of the southern region. This indicates that no-entry zones may be maintaining near-natural, pre-exploitation behaviour, which could have considerable implications for the genetic and social structures of a highly valuable commercial species. Conservation and fisheries management would therefore benefit from an increased understanding of how fish behaviour can influence population structures, and how these populations may be influenced by fishing and other human interactions

    Baked cod consumption delayed the development of kidney and liver dysfunction and affected plasma amino acid concentrations, but did not affect blood pressure, blood glucose or liver triacylglycerol concentrations in obese fa/fa Zucker rats.

    Get PDF
    Obesity is associated with changes in amino acid metabolism, and studies show that ingestion of fish proteins influence amino acid composition in plasma and urine, in addition to affecting risk factors for metabolic syndrome. Since the majority of fish proteins consumed by humans are as fish fillet, it is of interest to investigate if cod fillet intake affects amino acid composition and metabolic disorders. We hypothesized that a modified AIN-93G diet containing cod fillet would affect amino acid compositions in plasma and urine in obese rats, and also affect risk factors for metabolic syndrome when compared to rats fed a regular AIN-93G diet with casein as the protein source. Obese Zucker fa/fa rats, a rat model of metabolic syndrome, received diets containing 25% protein from lyophilized baked cod fillet and 75% protein from casein (Baked cod diet), or a Control diet with casein for four weeks. The Baked cod diet affected the amino acid composition in plasma, with e.g., lower glycine, histidine, homoarginine, homocysteine, methionine, proline and tyrosine concentrations, but did not affect amino acid concentrations in urine. The concentrations of markers for kidney and liver dysfunction were lower in the Baked cod group, however blood pressure development, fasting and postprandial glucose, and hepatic triacylglycerol concentrations were similar to the Control group. To conclude, substituting 25% of dietary protein with baked cod fillet affected concentrations of some amino acids in plasma and delayed development of kidney and liver dysfunction, but did not affect blood pressure, glucose concentration or fatty liver.publishedVersio

    Determinants of interindividual variation in exercise-induced cardiac troponin i levels

    Get PDF
    Background Postexercise cardiac troponin levels show considerable interindividual variations. This study aimed to identify the major determinants of this postexercise variation in cardiac troponin I (cTnI) following 3 episodes of prolonged high‐intensity endurance exercise. Methods and Results Study subjects were recruited among prior participants in a study of recreational cyclists completing a 91‐km mountain bike race in either 2013 or 2014 (first race). In 2018, study participants completed a cardiopulmonary exercise test 2 to 3 weeks before renewed participation in the same race (second race). Blood was sampled before and at 3 and 24 hours following all exercises. Blood samples were analyzed using the same Abbot high‐sensitivity cTnI STAT assay. Fifty‐nine individuals (aged 50±9 years, 13 women) without cardiovascular disease were included. Troponin values were lowest before, highest at 3 hours, and declining at 24 hours. The largest cTnI difference was at 3 hours following exercise between the most (first race) (cTnI: 200 [87–300] ng/L) and the least strenuous exercise (cardiopulmonary exercise test) (cTnI: 12 [7–23] ng/L; P<0.001). The strongest correlation between troponin values at corresponding times was before exercise (r=0.92, P<0.0001). The strongest correlations at 3 hours were between the 2 races (r=0.72, P<0.001) and at 24 hours between the cardiopulmonary exercise test and the second race (r=0.83, P<0.001). Participants with the highest or lowest cTnI levels showed no differences in race performance or baseline echocardiographic parameters. Conclusions The variation in exercise‐induced cTnI elevation is largely determined by a unique individual cTnI response that is dependent on the duration of high‐intensity exercise and the timing of cTnI sampling.publishedVersio

    A social-ecological approach to assessing and managing poaching by recreational fishers

    No full text
    Effective conservation depends upon people's compliance with regulations, yet non-compliance (eg poaching) is often the rule rather than the exception. Poaching is often clandestine and socially undesirable, requiring specialized, multidisciplinary approaches for assessment and management. We estimated poaching by recreational fishers in no-fishing reserves of Australia's Great Barrier Reef Marine Park (GBRMP) by conducting social surveys and quantifying derelict (lost or discarded) fishing gear. Our study revealed that (1)between 3-18% of fishers admitted to poaching within the past year, (2) poaching activities were often concentrated at certain times (holidays) and in specific places (poaching hotspots), and (3) fishers' primary motivations to poach were the perception of higher catches in reserves and a low probability of detection. Our results suggest that extolling certain ecological benefits of marine reserves where enforcement capacity is low could lead to the perverse outcome of encouraging non-compliance. Our combined social-ecological approach revealed that even in an iconic marine park such as the GBRMP, poaching levels are higher than previously assumed, which has implications for effective management
    corecore