273 research outputs found

    Modeling the Contact Mechanics of Hydrogels

    Get PDF
    A computationally lean model for the coarse-grained description of contact mechanics of hydrogels is proposed and characterized. It consists of a simple bead-spring model for the interaction within a chain, potentials describing the interaction between monomers and mold or confining walls, and a coarse-grained potential reflecting the solvent-mediated effective repulsion between non-bonded monomers. Moreover, crosslinking only takes place after the polymers have equilibrated in their mold. As such, the model is able to reflect the density, solvent quality, and the mold hydrophobicity that existed during the crosslinking of the polymers. Finally, such produced hydrogels are exposed to sinusoidal indenters. The simulations reveal a wavevector-dependent effective modulus E ∗ (q) with the following properties: (i) stiffening under mechanical pressure, and a sensitivity of E ∗ (q) on (ii) the degree of crosslinking at large wavelengths, (iii) the solvent quality, and (iv) the hydrophobicity of the mold in which the polymers were crosslinked. Finally, the simulations provide evidence that the elastic heterogeneity inherent to hydrogels can suffice to pin a compressed hydrogel to a microscopically frictionless wall that is undulated at a mesoscopic length scale. Although the model and simulations of this feasibility study are only two-dimensional, its generalization to three dimensions can be achieved in a straightforward fashion

    Distance dependence of force and dissipation in non-contact atomic force microscopy on Cu(100) and Al(111)

    Full text link
    The dynamic characteristics of a tip oscillating in the nc-AFM mode in close vicinity to a Cu(100)-surface are investigated by means of phase variation experiments in the constant amplitude mode. The change of the quality factor upon approaching the surface deduced from both frequency shift and excitation versus phase curves yield to consistent values. The optimum phase is found to be independent of distance. The dependence of the quality factor on distance is related to 'true' damping, because artefacts related to phase misadjustment can be excluded. The experimental results, as well as on-resonance measurements at different bias voltages on an Al(111) surface, are compared to Joule dissipation and to a model of dissipation in which long-range forces lead to viscoelastic deformations

    Self-Doping of Gold Chains on Silicon: A New Structural Model for Si(111)5x2-Au

    Full text link
    A new structural model for the Si(111)5x2-Au reconstruction is proposed and analyzed using first-principles calculations. The basic model consists of a "double honeycomb chain" decorated by Si adatoms. The 5x1 periodicity of the honeycomb chains is doubled by the presence of a half-occupied row of Si atoms that partially rebonds the chains. Additional adatoms supply electrons that dope the parent band structure and stabilize the period doubling; the optimal doping corresponds to one adatom per four 5x2 cells, in agreement with experiment. All the main features observed in scanning tunneling microscopy and photoemission are well reproduced.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Lett. (preprint with high quality figures available at http://cst-www.nrl.navy.mil/~erwin/papers/ausi111

    Observation of individual molecules trapped on a nanostructured insulator

    Full text link
    For the first time, ordered polar molecules confined in monolayer-deep rectangular pits produced on an alkali halide surface by electron irradiation have been resolved at room temperature by non-contact atomic force microscopy. Molecules self-assemble in a specific fashion inside pits of width smaller than 15 nm. By contrast no ordered aggregates of molecules are observed on flat terraces. Conclusions regarding nucleation and ordering mechanisms are drawn. Trapping in pits as small as 2 nm opens a route to address single molecules

    Tuning the size and composition of manganese oxide nanoparticles through varying temperature ramp and aging time

    Get PDF
    Manganese oxide (MnO) nanoparticles (NPs) can serve as robust pH-sensitive contrast agents for magnetic resonance imaging (MRI) due to Mn2+ release at low pH, which generates a ~30 fold change in T1 relaxivity. Strategies to control NP size, composition, and Mn2+ dissolution rates are essential to improve diagnostic performance of pH-responsive MnO NPs. We are the first to demonstrate that MnO NP size and composition can be tuned by the temperature ramping rate and aging time used during thermal decomposition of manganese(II) acetylacetonate. Two different temperature ramping rates (10°C/min and 20°C/min) were applied to reach 300°C and NPs were aged at that temperature for 5, 15, or 30 min. A faster ramping rate and shorter aging time produced the smallest NPs of ~23 nm. Shorter aging times created a mixture of MnO and Mn3O4 NPs, whereas longer aging times formed MnO. Our results indicate that a 20°C/min ramp rate with an aging time of 30 min was the ideal temperature condition to form the smallest pure MnO NPs of ~32 nm. However, Mn2+ dissolution rates at low pH were unaffected by synthesis conditions. Although Mn2+ production was high at pH 5 mimicking endosomes inside cells, minimal Mn2+ was released at pH 6.5 and 7.4, which mimic the tumor extracellular space and blood, respectively. To further elucidate the effects of NP composition and size on Mn2+ release and MRI contrast, the ideal MnO NP formulation (~32 nm) was compared with smaller MnO and Mn3O4 NPs. Small MnO NPs produced the highest amount of Mn2+ at acidic pH with maximum T1 MRI signal; Mn3O4 NPs generated the lowest MRI signal. MnO NPs encapsulated within poly(lactide-co-glycolide) (PLGA) retained significantly higher Mn2+ release and MRI signal compared to PLGA Mn3O4 NPs. Therefore, MnO instead of Mn3O4 should be targeted intracellularly to maximize MRI contrast

    Role of friction-induced torque in stick-slip motion

    Full text link
    We present a minimal quasistatic 1D model describing the kinematics of the transition from static friction to stick-slip motion of a linear elastic block on a rigid plane. We show how the kinematics of both the precursors to frictional sliding and the periodic stick-slip motion are controlled by the amount of friction-induced torque at the interface. Our model provides a general framework to understand and relate a series of recent experimental observations, in particular the nucleation location of micro-slip instabilities and the build up of an asymmetric field of real contact area.Comment: 6 pages, 5 figure
    • 

    corecore