10 research outputs found
Cortical processing of lateral skin stretch stimulation in humans.
Direction discrimination of a moving tactile stimulus requires intact dorsal columns and provides a sensitive clinical test of somatosensory dysfunction. Cortical mechanisms are poorly understood. We have applied tangential skin pulls to the right lower leg during functional magnetic resonance imaging. Healthy subjects judged the direction of the skin pulls (task experiment, n = 7) or received skin pulls passively (no task experiment, n = 8). Second somatosensory cortex (S2) was activated in the task as well as no task experiment, and there was no significant difference in cortical activation between the two experiments. Within S2 nearly all subjects had prominent activations in the caudal and superficial part, i.e., in the opercular parietal (OP) area 1. S1 was activated in only one of the subjects. Thus, S2 and especially OP 1 seems to be important for processing of lateral skin stretch stimulation. The finding suggests that a lesion of this area might cause a disturbance in tactile direction discrimination which should be relevant for clinical testing
Unmyelinated Tactile Cutaneous Nerves Signal Erotic Sensations
IntroductionIntrapersonal touch is a powerful tool for communicating emotions and can among many things evoke feelings of eroticism and sexual arousal. The peripheral neural mechanisms of erotic touch signaling have been less studied. C tactile afferents (unmyelinated low-threshold mechanoreceptors), known to underpin pleasant aspects of touch processing, have been posited to play an important role.MethodIn two studies, we investigated the relationship between C tactile activation and the perception of erotic and pleasant touch, using tactile brushing stimulation. In total, 66 healthy subjects (37 women, age range 19-51 years) were examined. In study 1 (n=20), five different stroking velocities were applied to the forearm and the inner thigh. The participants answered questions about partnership, mood, and touch. In study 2 (n=46), the same five stroking velocities were applied to the forearm. The participants answered questions about partnership, touch, and sexuality.ResultsBoth touch eroticism and pleasantness were rated significantly higher for C tactile optimal velocities compared with suboptimal velocities. No difference was found between the ratings of the thigh and the forearm. The velocity-dependent rating curves of pleasantness, intensity, and eroticism differed from each other. Pleasantness was best explained by a quadratic fit, intensity by a linear fit, and eroticism by both. A linear transformation of pleasantness and intensity predicted the observed eroticism ratings reliably. Eroticism ratings were negatively correlated with length of relationship.ConclusionTouch was rated most erotic when perceived as pleasant and weak. In human hairy skin, perception of pleasantness is correlated with the firing rate of C tactile afferents, and perception of intensity is correlated with the firing rate of A afferents. Accordingly, eroticism may be perceived most readily for touch stimuli that induce high activity in C tactile fibers and low activity in A fibers. Jonsson EH, Backlund Wasling H, Wagnbeck V, Dimitriadis M, Georgiadis JR, Olausson H, and Croy I. Unmyelinated tactile cutaneous nerves signal erotic sensations. J Sex Med 2015;12:1338-1345.</p
The relation between human hair follicle density and touch perception
Unmyelinated low threshold C-tactile fibers moderate pleasant aspects of touch. These fibers respond optimally to stroking stimulation of the skin with slow velocities (1-10 cm/s). Low threshold mechanoreceptors are arranged around hair follicles in rodent skin. If valid also in humans, hair follicle density (HFD) may relate to the perceived pleasantness of stroking tactile stimulation. We conducted two studies that examined the relation between HFD and affective touch perception in humans. In total, 138 healthy volunteers were stroked on the forearm and rated the pleasantness and intensity. Stimulation was performed by a robotic tactile stimulator delivering C-tactile optimal (1, 3, 10 cm/s) and non-optimal (0.1, 0.3, 30 cm/s) stroking velocities. Additionally, a measure of discriminative touch was applied in study 2. HFD of the same forearm was determined using the Cyanoacrylate Skin Stripping Method (CSSM), which we validated in a pretest. Women had higher HFD than men, which was explained by body size and weight. Furthermore, women rated affective touch stimuli as more pleasant and had higher tactile acuity. Depilation did not affect touch perception. A weak relationship was found between the C-tactile specific aspects of affective touch perception and HFD, and the hypothesis of HFD relating to pleasant aspects of stroking only received weak support.Funding Agencies|German Research Foundation (DFG) [CR 479/1-1]; Swedish Research Council; German Research Foundation; Open Access Publication Funds of the TU Dresden</p
Unmyelinated Tactile Cutaneous Nerves Signal Erotic Sensations
Introduction. Intrapersonal touch is a powerful tool for communicating emotions and can among many things evoke feelings of eroticism and sexual arousal. The peripheral neural mechanisms of erotic touch signaling have been less studied. C tactile afferents (unmyelinated low-threshold mechanoreceptors), known to underpin pleasant aspects of touch processing, have been posited to play an important role. MethodIn two studies, we investigated the relationship between C tactile activation and the perception of erotic and pleasant touch, using tactile brushing stimulation. In total, 66 healthy subjects (37 women, age range 19-51 years) were examined. In study 1 (n=20), five different stroking velocities were applied to the forearm and the inner thigh. The participants answered questions about partnership, mood, and touch. In study 2 (n=46), the same five stroking velocities were applied to the forearm. The participants answered questions about partnership, touch, and sexuality. ResultsBoth touch eroticism and pleasantness were rated significantly higher for C tactile optimal velocities compared with suboptimal velocities. No difference was found between the ratings of the thigh and the forearm. The velocity-dependent rating curves of pleasantness, intensity, and eroticism differed from each other. Pleasantness was best explained by a quadratic fit, intensity by a linear fit, and eroticism by both. A linear transformation of pleasantness and intensity predicted the observed eroticism ratings reliably. Eroticism ratings were negatively correlated with length of relationship. ConclusionTouch was rated most erotic when perceived as pleasant and weak. In human hairy skin, perception of pleasantness is correlated with the firing rate of C tactile afferents, and perception of intensity is correlated with the firing rate of A afferents. Accordingly, eroticism may be perceived most readily for touch stimuli that induce high activity in C tactile fibers and low activity in A fibers. Jonsson EH, Backlund Wasling H, Wagnbeck V, Dimitriadis M, Georgiadis JR, Olausson H, and Croy I. Unmyelinated tactile cutaneous nerves signal erotic sensations. J Sex Med 2015;12:1338-1345.Funding Agencies|German Research Foundation (DFG) [CR 479/1-1]; Swedish Research Council</p
Affective and non-affective touch evoke differential brain responses in 2-month-old infants
Caressing touch is an effective way to communicate emotions and to create social bonds. It is also one of the key mediators of early parental bonding. The caresses are generally thought to represent a social form of touching and indeed, slow, gentle brushing is encoded in specialized peripheral nerve fibers, the C-tactile (CT) afferents. In adults, areas such as the posterior insula and superior temporal sulcus are activated by affective, slow stroking touch but not by fast stroking stimulation. However, whether these areas are activated in infants, after social tactile stimulation, is unknown. In this study, we compared the total hemoglobin responses measured with diffuse optical tomography (DOT) in the left hemisphere following slow and fast stroking touch stimulation in 16 2-month-old infants. We compared slow stroking (optimal CT afferent stimulation) to fast stroking (non-optimal CT stimulation). Activated regions were delineated using two methods: one based on contrast between the two conditions, and the other based on voxel-based statistical significance of the difference between the two conditions. The first method showed a single activation cluster in the temporal cortex with center of gravity in the middle temporal gyrus where the total hemoglobin increased after the slow stroking relative to the fast stroking (p = 0.04 uncorrected). The second method revealed a cluster in the insula with an increase in total hemoglobin in the insular cortex in response to slow stroking relative to fast stroking (p = 0.0005 uncorrected; p = 0.04 corrected for multiple comparisons). These activation clusters encompass areas that are involved in processing of affective, slow stroking touch in the adult brain. We conclude that the infant brain shows a pronounced and adult-like response to slow stroking touch compared to fast stroking touch in the insular cortex but the expected response in the primary somatosensory cortex was not found at this age. The results imply that emotionally valent touch is encoded in the brain in adult-like manner already soon after birth and this suggests a potential for involvement of touch in bonding with the caretaker.Peer reviewe