550 research outputs found
Development and testing of an additively manufactured monolithic catalyst bed for HTP thruster applications
Diffractive Contribution to the Elasticity and the Nucleonic Flux in the Atmosphere
We calculate the average elasticity considering non-diffractive and single
diffractive interactions and perform an analysis of the cosmic-ray flux by
means of an analytical solution for the nucleonic diffusion equation. We show
that the diffractive contribution is important for the adequate description of
the nucleonic and hadronic fluxes in the atmosphere.Comment: 10 pages, latex, 2 figures (uuencoded PostScript
Isospin Dependence in the Odd-Even Staggering of Nuclear Binding Energies
The FRS-ESR facility at GSI provides unique conditions for precision
measurements of large areas on the nuclear mass surface in a single experiment.
Values for masses of 604 neutron-deficient nuclides (30<=Z<=92) were obtained
with a typical uncertainty of 30 microunits. The masses of 114 nuclides were
determined for the first time. The odd-even staggering (OES) of nuclear masses
was systematically investigated for isotopic chains between the proton shell
closures at Z=50 and Z=82. The results were compared with predictions of modern
nuclear models. The comparison revealed that the measured trend of OES is not
reproduced by the theories fitted to masses only. The spectral pairing gaps
extracted from models adjusted to both masses, and density related observables
of nuclei agree better with the experimental data.Comment: Physics Review Letters 95 (2005) 042501
http://link.aps.org/abstract/PRL/v95/e04250
Present and Future Experiments with Stored Exotic Nuclei at Relativistic Energies
Recent progress is presented from experiments on masses and lifetimes of bare
and few-electron exotic nuclei at GSI.Comment: Proceedings of International Conference on "Frontiers in Nuclear
Structure, Astrophysics and Reactions", Kos, Greece, September 12-17, 200
High energy hadrons in EAS at mountain altitude
An extensive simulation has been carried out to estimate the physical
interpretation of dynamical factors such as , in terms of high
energy interaction features, concentrated in the present analysis on the
average transverse momentum. It appears that the large enhancement observed for
versus primary energy, suggesting in earliest analysis a significant
rise of with energy, is only the result of the limited resolution of the
detectors and remains in agreement with a wide range of models used in
simulations.Comment: 13 pages, 6 PostScript figures, LaTeX Subm. to JPhys
In situ observation of calcium oxide treatment of inclusions in molten steel by confocal microscopy
Calcium treatment of aluminum killed steel was observed in situ using high-temperature confocal scanning laser microscope (HT-CSLM). This technique along with a novel experimental design enables continuous observation of clustering behavior of inclusions before and after the calcium treatment. Results show that the increase in average inclusion size in non-calcium-treated condition was much faster compared to calcium-treated condition. Results also show that the magnitude of attractive capillary force between inclusion particles in non-treated condition was about 10−15 N for larger particles (10 µm) and 10−16 N for smaller particles (5 µm) and acting length of force was about 30 µm. In the case of calcium-treated condition, the magnitude and acting length of force was reduced to 10−16 N and 10 µm, respectively, for particles of all sizes. This change in attractive capillary attractive force is due to change in inclusion morphology from solid alumina disks to liquid lens particles during calcium treatment
Synthesis new fused and non-fused chromene [I] derivatives derived from 2-amino-4-[4-(dimethylamino)phenyl]-5-oxo-4H,5H-pyrano[3,2-c]chromene-3-carbonitrile
A new series of pyrano-chromene and pyrimido pyrano-chromene derivatives were synthesized starting from 2-amino-4-[4-(dimethylamino)phenyl]-5-oxo-4H,5H-pyrano[3,2-c]chromene-3-carbonitrile (5). The structures of the synthesized compounds were elucidated by spectral data. Key words: Chromenes, Pyrano-chromene
Environmental Radioactivity of TE-NORM Waste Produced from Petroleum Industry in Egypt: Review on Characterization and Treatment
Modeling of the Heat-Affected and Thermomechanically Affected Zones in a Ti-6Al-4V Inertia Friction Weld
Inertia friction welding has been used across the aerospace, automotive, and power-generation industries for the fabrication of complex axisymmetric components for over forty years. The process involves one axisymmetric piece being held stationary and another piece being brought into contact set to rotate about its axis of symmetry by a flywheel with the system under an applied load across the joint. Plasticization at the joint interface through the frictional heating sees the two pieces bond together. The titanium alloy Ti-6Al-4V has been widely studied for inertia welding applications. A successful selection of processing parameters (flywheel energy and mass, applied load) allows an inertia welding process which produces a very high-integrity weld, with a minimal heat-affected zone (HAZ) and thermomechanically affected zone (TMAZ), formed as a narrow band at the interface and extending further into the material. The width of this narrow band of heated material is dependent upon the process parameters used. A series of experimental inertia friction welds were performed using Ti-6Al-4V, and a finite element (FE) modeling framework was developed using the FE code Deform in order to predict the widths of the HAZ and TMAZ at the weld interface. The experimentally observed HAZ boundaries were correlated with the thermal fields from the FE model, while TMAZ boundaries were correlated with the Von Mises plastic strain fields.</p
Laser powder bed fusion of Ti-6Al-2Sn-4Zr-6Mo alloy and properties prediction using deep learning approaches
Ti-6Al-2Sn-4Zr-6Mo is one of the most important titanium alloys characterised by its high strength, fatigue, and toughness properties, making it a popular material for aerospace and biomedical applications. However, no studies have been reported on processing this alloy using laser powder bed fusion. In this paper, a deep learning neural network (DLNN) was introduced to rationalise and predict the densification and hardness due to Laser Powder Bed Fusion of Ti-6Al-2Sn-4Zr-6Mo alloy. The process optimisation results showed that near-full densification is achieved in Ti-6Al-2Sn-4Zr-6Mo alloy samples fabricated using an energy density of 77–113 J/mm3. Furthermore, the hardness of the builds was found to increase with increasing the laser energy density. Porosity and the hardness measurements were found to be sensitive to the island size, especially at high-energy-density. Hot isostatic pressing (HIP) was able to eliminate the porosity, increase the hardness, and achieve the desirable α and β phases. The developed model was validated and used to produce process maps. The trained deep learning neural network model showed the highest accuracy with a mean percentage error of 3% and 0.2% for the porosity and hardness. The results showed that deep learning neural networks could be an efficient tool for predicting materials properties using small data
- …
