178 research outputs found

    Time-dependent unitary perturbation theory for intense laser driven molecular orientation

    Full text link
    We apply a time-dependent perturbation theory based on unitary transformations combined with averaging techniques, on molecular orientation dynamics by ultrashort pulses. We test the validity and the accuracy of this approach on LiCl described within a rigid-rotor model and find that it is more accurate than other approximations. Furthermore, it is shown that a noticeable orientation can be achieved for experimentally standard short laser pulses of zero time average. In this case, we determine the dynamically relevant parameters by using the perturbative propagator, that is derived from this scheme, and we investigate the temperature effects on the molecular orientation dynamics.Comment: 16 pages, 6 figure

    Reaching optimally oriented molecular states by laser kicks

    Full text link
    We present a strategy for post-pulse orientation aiming both at efficiency and maximal duration within a rotational period. We first identify the optimally oriented states which fulfill both requirements. We show that a sequence of half-cycle pulses of moderate intensity can be devised for reaching these target states.Comment: 4 pages, 3 figure

    Laser control for the optimal evolution of pure quantum states

    Full text link
    Starting from an initial pure quantum state, we present a strategy for reaching a target state corresponding to the extremum (maximum or minimum) of a given observable. We show that a sequence of pulses of moderate intensity, applied at times when the average of the observable reaches its local or global extremum, constitutes a strategy transferable to different control issues. Among them, post-pulse molecular alignment and orientation are presented as examples. The robustness of such strategies with respect to experimentally relevant parameters is also examined.Comment: 16 pages, 9 figure

    Unitary time-dependent superconvergent technique for pulse-driven quantum dynamics

    Get PDF
    We present a superconvergent Kolmogorov-Arnold-Moser type of perturbation theory for time-dependent Hamiltonians. It is strictly unitary upon truncation at an arbitrary order and not restricted to periodic or quasiperiodic Hamiltonians. Moreover, for pulse-driven systems we construct explicitly the KAM transformations involved in the iterative procedure. The technique is illustrated on a two-level model perturbed by a pulsed interaction for which we obtain convergence all the way from the sudden regime to the opposite adiabatic regime

    Optimized time-dependent perturbation theory for pulse-driven quantum dynamics in atomic or molecular systems

    Full text link
    We present a time-dependent perturbative approach adapted to the treatment of intense pulsed interactions. We show there is a freedom in choosing secular terms and use it to optimize the accuracy of the approximation. We apply this formulation to a unitary superconvergent technique and improve the accuracy by several orders of magnitude with respect to the Magnus expansion.Comment: 4 pages, 2 figure

    A quantitative theory-versus-experiment comparison for the intense laser dissociation of H2+

    Full text link
    A detailed theory-versus-experiment comparison is worked out for H2+_2^+ intense laser dissociation, based on angularly resolved photodissociation spectra recently recorded in H.Figger's group. As opposite to other experimental setups, it is an electric discharge (and not an optical excitation) that prepares the molecular ion, with the advantage for the theoretical approach, to neglect without lost of accuracy, the otherwise important ionization-dissociation competition. Abel transformation relates the dissociation probability starting from a single ro-vibrational state, to the probability of observing a hydrogen atom at a given pixel of the detector plate. Some statistics on initial ro-vibrational distributions, together with a spatial averaging over laser focus area, lead to photofragments kinetic spectra, with well separated peaks attributed to single vibrational levels. An excellent theory-versus-experiment agreement is reached not only for the kinetic spectra, but also for the angular distributions of fragments originating from two different vibrational levels resulting into more or less alignment. Some characteristic features can be interpreted in terms of basic mechanisms such as bond softening or vibrational trapping.Comment: submitted to PRA on 21.05.200

    Pulse-driven quantum dynamics beyond the impulsive regime

    Full text link
    We review various unitary time-dependent perturbation theories and compare them formally and numerically. We show that the Kolmogorov-Arnold-Moser technique performs better owing to both the superexponential character of correction terms and the possibility to optimize the accuracy of a given level of approximation which is explored in details here. As an illustration, we consider a two-level system driven by short pulses beyond the sudden limit.Comment: 15 pages, 5 color figure

    Metformin for Obesity in Children and Adolescents: A Systematic Review

    Get PDF
    OBJECTIVE: To summarize the efficacy of metformin in reducing BMI and cardiometabolic risk in obese children and adolescents without diabetes. RESEARCH DESIGN AND METHODS: We performed a systematic review and meta-analysis of randomized controlled trials (RCTs). Double-blind RCTs of > or =6 months duration in obese subjects age < or =19 years without diabetes were included. Our primary outcomes of interest include changes in BMI and measures of insulin sensitivity. RESULTS: Five trials met inclusion criteria (n = 320 individuals). Compared with placebo, metformin reduced BMI by 1.42 kg/m(2) (95% CI 0.83-2.02) and homeostasis model assessment insulin of resistance (HOMA-IR) score by 2.01 (95% CI 0.75-3.26). CONCLUSIONS: Metformin appears to be moderately efficacious in reducing BMI and insulin resistance in hyperinsulinemic obese children and adolescents in the short term. Larger, longer-term studies in different populations are needed to establish its role in the treatment of overweight children

    Turner syndrome and associated problems in turkish children: A multicenter study

    Get PDF
    Objective: Turner syndrome (TS) is a chromosomal disorder caused by complete or partial X chromosome monosomy that manifests various clinical features depending on the karyotype and on the genetic background of affected girls. This study aimed to systematically investigate the key clinical features of TS in relationship to karyotype in a large pediatric Turkish patient population. Methods: Our retrospective study included 842 karyotype-proven TS patients aged 0-18 years who were evaluated in 35 different centers in Turkey in the years 2013-2014. Results: The most common karyotype was 45,X (50.7%), followed by 45,X/46,XX (10.8%), 46,X,i(Xq) (10.1%) and 45,X/46,X,i(Xq) (9.5%). Mean age at diagnosis was 10.2±4.4 years. The most common presenting complaints were short stature and delayed puberty. Among patients diagnosed before age one year, the ratio of karyotype 45,X was significantly higher than that of other karyotype groups. Cardiac defects (bicuspid aortic valve, coarctation of the aorta and aortic stenosi) were the most common congenital anomalies, occurring in 25% of the TS cases. This was followed by urinary system anomalies (horseshoe kidney, double collector duct system and renal rotation) detected in 16.3%. Hashimoto’s thyroiditis was found in 11.1% of patients, gastrointestinal abnormalities in 8.9%, ear nose and throat problems in 22.6%, dermatologic problems in 21.8% and osteoporosis in 15.3%. Learning difficulties and/or psychosocial problems were encountered in 39.1%. Insulin resistance and impaired fasting glucose were detected in 3.4% and 2.2%, respectively. Dyslipidemia prevalence was 11.4%. Conclusion: This comprehensive study systematically evaluated the largest group of karyotype-proven TS girls to date. The karyotype distribution, congenital anomaly and comorbidity profile closely parallel that from other countries and support the need for close medical surveillance of these complex patients throughout their lifespan. © Journal of Clinical Research in Pediatric Endocrinology

    Stationary Flows of the Parabolic Potential Barrier in Two Dimensions

    Full text link
    In the two-dimensional isotropic parabolic potential barrier V(x,y)=V0mγ2(x2+y2)/2V(x, y)=V_0 -m\gamma^2 (x^2+y^2)/2, though it is a model of an unstable system in quantum mechanics, we can obtain the stationary states corresponding to the real energy eigenvalue V0V_0. Further, they are infinitely degenerate. For the first few eigenstates, we will find the stationary flows round a right angle that are expressed by the complex velocity potentials W=±γz2/2W=\pm\gamma z^2/2.Comment: 12 pages, AmS-LaTeX, 4 figure
    corecore