416 research outputs found

    Probing the magnetic moment of FePt micromagnets prepared by Focused Ion Beam milling

    Get PDF
    We investigate the degradation of the magnetic moment of a 300 nm thick FePt film induced by Focused Ion Beam (FIB) milling. A 1 μm×8 μm1~\mu \mathrm{m} \times 8~\mu \mathrm{m} rod is milled out of a film by a FIB process and is attached to a cantilever by electron beam induced deposition. Its magnetic moment is determined by frequency-shift cantilever magnetometry. We find that the magnetic moment of the rod is μ=1.1±0.1×10−12Am2\mu = 1.1 \pm 0.1 \times 10 ^{-12} \mathrm{Am}^2, which implies that 70% of the magnetic moment is preserved during the FIB milling process. This result has important implications for atom trapping and magnetic resonance force microscopy (MRFM), that are addressed in this paper.Comment: 4 pages, 4 figure

    Mapping spectroscopic uncertainties into prospective methane retrieval errors from Sentine-5 and its precursor

    Get PDF
    Sentinel-5 (S5) and its precursor (S5P) are future European satellite missions aiming at global monitoring of methane (CH4) column average dry air mole fractions (XCH4). The spectrometers to be deployed on-board the satellites record spectra of sunlight backscattered from the Earth\u27s surface and atmosphere. In particular, they exploit CH4 absorption in the shortwave infrared spectral range around 1.65 µm (S5 only) and 2.35 µm (both, S5 and S5P) wavelength. Given an accuracy goal of better than 2% for XCH4 to be delivered on regional scales, assessment and reduction of potential sources of systematic error such as spectroscopic uncertainties is crucial. Here, we investigate how spectroscopic errors propagate into retrieval errors on the global scale. To this end, absorption spectra of a ground-based Fourier Transform Spectrometer (FTS) operating at very high spectral resolution serve as estimate for the quality of the spectroscopic parameters. Feeding the FTS fitting residuals as a perturbation into a global ensemble of simulated S5 and S5P-like spectra at relatively low spectral resolution, XCH4 retrieval errors exceed 1% in large parts of the world and show systematic correlations on regional scales, calling for improved spectroscopic parameters

    Erbium in crystal silicon: Optical activation, excitation, and concentration limits

    Get PDF
    7 pags.; 7 figs.The optical activation, excitation, and concentration limits of erbium in crystal Si are studied. Preamorphized surface layers of Czochralski-grown (Cz) Si(100), containing 1.7×1018 O/cm3, were implanted with 250 keV Er at fluences in the range 8×1011-8×10 14 cm-2. After thermal solid-phase epitaxy of the Er-doped amorphous layers at 600°C, Er is trapped in the crystal at concentrations ranging from 3×1016 to 7×1019 Er/cm 3, as measured by secondary-ion-mass spectrometry. Photoluminescence spectra taken at 77 K show the characteristic Er3+ intra-4f luminescence at 1.54 ¿m. Photoluminescence excitation spectroscopy shows that Er is excited through a photocarrier-mediated process. Rapid thermal annealing at 1000°C for 15 s increases the luminescence intensity, mainly due to an increase in minority-carrier lifetime, which enhances the excitation efficiency. Luminescent Er forms clusters with oxygen: the maximum Er concentration that can be optically activated is determined by the O content, and is (3±1)×1017 Er/cm3 in Cz-Si. The internal quantum efficiency for electrical excitation of Er in Cz-Si is larger than 3×10-6. © 1995 American Institute of Physics.This work is part of the research program of the Foundation for Fundamental Research on Matter (FOM) and was made possible by financial support from the Dutch Organization for the Advancement of Pure Research @IWO), the Netherlands Technology Foundation (STW), and the IC Technology Program (IOP Electra-Optics) of the Ministry of Economic Affairs. R.S. acknowIedges financial support from CSIC, Spain.Peer Reviewe

    Spectroscopy of free radicals and radical containing entrance-channel complexes in superfluid helium nano-droplets

    Get PDF
    The spectroscopy of free radicals and radical containing entrance-channel complexes embedded in superfluid helium nano-droplets is reviewed. The collection of dopants inside individual droplets in the beam represents a micro-canonical ensemble, and as such each droplet may be considered an isolated cryo-reactor. The unique properties of the droplets, namely their low temperature (0.4 K) and fast cooling rates (∼1016\sim10^{16} K s−1^{-1}) provides novel opportunities for the formation and high-resolution studies of molecular complexes containing one or more free radicals. The production methods of radicals are discussed in light of their applicability for embedding the radicals in helium droplets. The spectroscopic studies performed to date on molecular radicals and on entrance / exit-channel complexes of radicals with stable molecules are detailed. The observed complexes provide new information on the potential energy surfaces of several fundamental chemical reactions and on the intermolecular interactions present in open-shell systems. Prospects of further experiments of radicals embedded in helium droplets are discussed, especially the possibilities to prepare and study high-energy structures and their controlled manipulation, as well as the possibility of fundamental physics experiments.Comment: 25 pages, 12 figures, 4 tables (RevTeX

    Propulsion of Ripples on Glass by Ion Bombardment

    Full text link

    A small S-MIF signal in Martian regolith pyrite: Implications for the atmosphere

    Get PDF
    keywords: Sulfur, sulfate, Mars, S-MIF, regolith, atmosphereThe past Martian atmosphere is often compared to the Archean Earth’s as both were dominated by CO2-rich and O2-poor chemistries. Archean Earth rocks preserve mass-independently fractionated sulfur isotopes (S-MIF; non-zero Δ33S and Δ36S), originating from photochemistry in an anoxic atmosphere. Thus, Martian crustal rocks might also be expected to preserve a S-MIF signature, providing insights into past atmospheric chemistry. We have used secondary ion mass spectrometry (SIMS) to investigate in situ, the sulfur isotope systematics of NWA 8171 (paired to NWA 7034), a Martian polymict breccia containing pyrite that formed through hydrothermal sulfur addition in a near-surface regolith setting. In this meteorite, pyrite grains have a weighted mean of Δ33S of -0.14 ± 0.08 ‰ and Δ36S = -0.70 ± 0.40 ‰ (2 s.e.m.), so the S-MIF signature is subtle. Sulfur isotope data for four additional shergottites yield Δ33S values that are not resolvable from zero, as in previous studies of shergottites. At first glance the result for the polymict breccia might seem surprising, but no Martian meteorite yet has yielded a S-MIF signature akin to the large deviations seen on Earth. We suggest that S-MIF-bearing aerosols (H2SO4 and S8) were produced when volcanic activity pushed a typically oxidising Martian atmosphere into a reduced state. After rain-out of these aerosols, S8 would tend to be oxidised by chlorate, dampening the S-MIF signal, which might be somewhat retained in the more abundant photolytic sulfate. Then in the regolith, mixing of aqueous surface-derived sulfate with igneous sulfide (the latter with zero MIF), to form the abundant pyrite seen in NWA 8171, would further dampen the S-MIF signal. Nonetheless, the small negative Δ33S anomalies seen in Martian meteorites imply that volcanic activity was sufficient to produce a reducing atmosphere at times. This volcanically-driven atmospheric evolution would tend to produce high levels of carbonyl sulfide (OCS). Given that OCS is a relatively long-lived strong greenhouse gas, the S-MIF signal implies that volcanism periodically generated warmer conditions, perhaps offering an evidence-based solution to the young wet Mars paradox

    Langevin Equation for the Rayleigh model with finite-ranged interactions

    Full text link
    Both linear and nonlinear Langevin equations are derived directly from the Liouville equation for an exactly solvable model consisting of a Brownian particle of mass MM interacting with ideal gas molecules of mass mm via a quadratic repulsive potential. Explicit microscopic expressions for all kinetic coefficients appearing in these equations are presented. It is shown that the range of applicability of the Langevin equation, as well as statistical properties of random force, may depend not only on the mass ratio m/Mm/M but also by the parameter Nm/MNm/M, involving the average number NN of molecules in the interaction zone around the particle. For the case of a short-ranged potential, when N≪1N\ll 1, analysis of the Langevin equations yields previously obtained results for a hard-wall potential in which only binary collisions are considered. For the finite-ranged potential, when multiple collisions are important (N≫1N\gg 1), the model describes nontrivial dynamics on time scales that are on the order of the collision time, a regime that is usually beyond the scope of more phenomenological models.Comment: 21 pages, 1 figure. To appear in Phys. Rev.

    Mapping spectroscopic uncertainties into prospective methane retrieval errors from Sentine-5 and its precursor

    Get PDF
    Sentinel-5 (S5) and its precursor (S5P) are future European satellite missions aiming at global monitoring of methane (CH4) column average dry air mole fractions (XCH4). The spectrometers to be deployed on-board the satellites record spectra of sunlight backscattered from the Earth\u27s surface and atmosphere. In particular, they exploit CH4 absorption in the shortwave infrared spectral range around 1.65 µm (S5 only) and 2.35 µm (both, S5 and S5P) wavelength. Given an accuracy goal of better than 2% for XCH4 to be delivered on regional scales, assessment and reduction of potential sources of systematic error such as spectroscopic uncertainties is crucial. Here, we investigate how spectroscopic errors propagate into retrieval errors on the global scale. To this end, absorption spectra of a ground-based Fourier Transform Spectrometer (FTS) operating at very high spectral resolution serve as estimate for the quality of the spectroscopic parameters. Feeding the FTS fitting residuals as a perturbation into a global ensemble of simulated S5 and S5P-like spectra at relatively low spectral resolution, XCH4 retrieval errors exceed 1% in large parts of the world and show systematic correlations on regional scales, calling for improved spectroscopic parameters

    Projecting Global Biodiversity Indicators under Future Development Scenarios

    Get PDF
    To address the ongoing global biodiversity crisis, governments have set strategic objectives and have adopted indicators to monitor progress toward their achievement. Projecting the likely impacts on biodiversity of different policy decisions allows decision makers to understand if and how these targets can be met. We projected trends in two widely used indicators of population abundance Geometric Mean Abundance, equivalent to the Living Planet Index and extinction risk (the Red List Index) under different climate and land-use change scenarios. Testing these on terrestrial carnivore and ungulate species, we found that both indicators decline steadily, and by 2050, under a Business-as-usual (BAU) scenario, geometric mean population abundance declines by 18-35% while extinction risk increases for 8-23% of the species, depending on assumptions about species responses to climate change. BAU will therefore fail Convention on Biological Diversity target 12 of improving the conservation status of known threatened species. An alternative sustainable development scenario reduces both extinction risk and population losses compared with BAU and could lead to population increases. Our approach to model species responses to global changes brings the focus of scenarios directly to the species level, thus taking into account an additional dimension of biodiversity and paving the way for including stronger ecological foundations into future biodiversity scenario assessments.Peer reviewe
    • …
    corecore