23 research outputs found
MYCN mediates cysteine addiction and sensitizes neuroblastoma to ferroptosis
Aberrant expression of MYC transcription factor family members predicts poor clinical outcome in many human cancers. Oncogenic MYC profoundly alters metabolism and mediates an antioxidant response to maintain redox balance. Here we show that MYCN induces massive lipid peroxidation on depletion of cysteine, the rate-limiting amino acid for glutathione (GSH) biosynthesis, and sensitizes cells to ferroptosis, an oxidative, non-apoptotic and iron-dependent type of cell death. The high cysteine demand of MYCN-amplified childhood neuroblastoma is met by uptake and transsulfuration. When uptake is limited, cysteine usage for protein synthesis is maintained at the expense of GSH triggering ferroptosis and potentially contributing to spontaneous tumor regression in low-risk neuroblastomas. Pharmacological inhibition of both cystine uptake and transsulfuration combined with GPX4 inactivation resulted in tumor remission in an orthotopic MYCN-amplified neuroblastoma model. These findings provide a proof of concept of combining multiple ferroptosis targets as a promising therapeutic strategy for aggressive MYCN-amplified tumors
MYCN mediates cysteine addiction and sensitizes neuroblastoma to ferroptosis
Aberrant expression of MYC transcription factor family members predicts poor clinical outcome in many human cancers. Oncogenic MYC profoundly alters metabolism and mediates an antioxidant response to maintain redox balance. Here we show that MYCN induces massive lipid peroxidation on depletion of cysteine, the rate-limiting amino acid for glutathione (GSH) biosynthesis, and sensitizes cells to ferroptosis, an oxidative, non-apoptotic and iron-dependent type of cell death. The high cysteine demand of MYCN-amplified childhood neuroblastoma is met by uptake and transsulfuration. When uptake is limited, cysteine usage for protein synthesis is maintained at the expense of GSH triggering ferroptosis and potentially contributing to spontaneous tumor regression in low-risk neuroblastomas. Pharmacological inhibition of both cystine uptake and transsulfuration combined with GPX4 inactivation resulted in tumor remission in an orthotopic MYCN-amplified neuroblastoma model. These findings provide a proof of concept of combining multiple ferroptosis targets as a promising therapeutic strategy for aggressive MYCN-amplified tumors
Ethyl 2-((4-Chlorophenyl)amino)thiazole-4-carboxylate and derivatives are potent inducers of Oct3/4
The octamer-binding transcription factor 4 (Oct3/4) is a master gene in the transcriptional regulatory network of pluripotent cells. Repression of Oct3/4 in embryonic stem cells (ESCs) is associated with cell differentiation and loss of pluripotency, whereas forced overexpression in cooperation with other transcriptional factors, such as Nanog, Sox2, and Lin28, can reprogram somatic cells back into pluripotent cells, termed induced pluripotent stem cells (iPSCs). However, random integration and potential tumorigenic transformation caused by viral transduction limit the clinical application of iPSCs. By performing a cell-based high throughput screening (HTS) campaign, we identified several potential small molecules as inducers of Oct3/4 expression. Here we report a lead structure ethyl 2-((4-chlorophenyl)amino)-thiazole-4-carboxylate, termed O4I2, showing high activity in enforcing Oct3/4 expression. On the basis of chemical expansion, we further identified derivatives h aving increased activities toward Oct3/4 induction. Thus, O4I2 and its derivatives should provide a new class of small molecules suitable for iPSC generation
Identification of 2-[4-[(4-methoxyphenyl)methoxy]-phenyl]acetonitrile and derivatives as potent Oct3/4 inducers
Reprogramming somatic cells into induced-pluripotent cells (iPSCs) provides new access to all somatic cell types for clinical application without any ethical controversy arising from the use of embryonic stem cells (ESCs). Established protocols for iPSCs generation based on viral transduction with defined factors are limited by low efficiency and the risk of genetic abnormality. Several small molecules have been reported as replacements for defined transcriptional factors, but a chemical able to replace Oct3/4 allowing the generation of human iPSCs is still unavailable. Using a cell-based High Throughput Screening (HTS) campaign, we identified that 2-[4-[(4-methoxyphenyl)methoxy]phenyl]acetonitrile (1), termed O4I1, enhanced Oct3/4 expression. Structural verification and modification by chemical synthesis showed that O4I1 and its derivatives not only promoted expression and stabilization of Oct3/4 but also enhanced its transcriptional activity in diverse human somatic cells, implying the possible benefit from using this class of compounds in regenerative medicine