186 research outputs found

    Bring Your Rear Cameras for Egocentric 3{D} Human Pose Estimation

    Get PDF
    Egocentric 3D human pose estimation has been actively studied using camerasinstalled in front of a head-mounted device (HMD). While frontal placement isthe optimal and the only option for some tasks, such as hand tracking, itremains unclear if the same holds for full-body tracking due to self-occlusionand limited field-of-view coverage. Notably, even the state-of-the-art methodsoften fail to estimate accurate 3D poses in many scenarios, such as when HMDusers tilt their heads upward (a common motion in human activities). A keylimitation of existing HMD designs is their neglect of the back of the body,despite its potential to provide crucial 3D reconstruction cues. Hence, thispaper investigates the usefulness of rear cameras in the HMD design forfull-body tracking. We also show that simply adding rear views to the frontalinputs is not optimal for existing methods due to their dependence onindividual 2D joint detectors without effective multi-view integration. Toaddress this issue, we propose a new transformer-based method that refines 2Djoint heatmap estimation with multi-view information and heatmap uncertainty,thereby improving 3D pose tracking. Moreover, we introduce two new large-scaledatasets, Ego4View-Syn and Ego4View-RW, for a rear-view evaluation. Ourexperiments show that the new camera configurations with back views providesuperior support for 3D pose tracking compared to only frontal placements. Theproposed method achieves significant improvement over the current state of theart (>10% on MPJPE). We will release the source code, trained models, and newdatasets on our project page https://4dqv.mpi-inf.mpg.de/EgoRear/.<br

    Whole-Genome Sequencing of Sake Yeast Saccharomyces cerevisiae Kyokai no. 7

    Get PDF
    The term ‘sake yeast’ is generally used to indicate the Saccharomyces cerevisiae strains that possess characteristics distinct from others including the laboratory strain S288C and are well suited for sake brewery. Here, we report the draft whole-genome shotgun sequence of a commonly used diploid sake yeast strain, Kyokai no. 7 (K7). The assembled sequence of K7 was nearly identical to that of the S288C, except for several subtelomeric polymorphisms and two large inversions in K7. A survey of heterozygous bases between the homologous chromosomes revealed the presence of mosaic-like uneven distribution of heterozygosity in K7. The distribution patterns appeared to have resulted from repeated losses of heterozygosity in the ancestral lineage of K7. Analysis of genes revealed the presence of both K7-acquired and K7-lost genes, in addition to numerous others with segmentations and terminal discrepancies in comparison with those of S288C. The distribution of Ty element also largely differed in the two strains. Interestingly, two regions in chromosomes I and VII of S288C have apparently been replaced by Ty elements in K7. Sequence comparisons suggest that these gene conversions were caused by cDNA-mediated recombination of Ty elements. The present study advances our understanding of the functional and evolutionary genomics of the sake yeast

    The plan of the search for Antarctic Meteorites on the Nansen Ice Field by the Joint Expedition between JARE-54 and BELARE 2012-2013.

    Get PDF
    第3回極域科学シンポジウム/第35回南極隕石シンポジウム 11月29日(木)、30日(金) 国立国語研究所 2階講

    Tandem repeat coupled with endonuclease cleavage (TREC): a seamless modification tool for genome engineering in yeast

    Get PDF
    The complete synthetic Mycoplasma genitalium genome (∼583 kb) has been assembled and cloned as a circular plasmid in the yeast Saccharomyces cerevisiae. Attempts to engineer the cloned genome by standard genetic methods involving the URA3/5-fluoroorotic acid (5-FOA) counter-selection have shown a high background of 5-FOA resistant clones derived from spontaneous deletions of the bacterial genome maintained in yeast. Here, we report a method that can seamlessly modify the bacterial genome in yeast with high efficiency. This method requires two sequential homologous recombination events. First, the target region is replaced with a mutagenesis cassette that consists of a knock-out CORE (an18-bp I-SceI recognition site, the SCEI gene under the control of the GAL1 promoter, and the URA3 marker) and a DNA fragment homologous to the sequence upstream of the target site. The replacement generates tandem repeat sequences flanking the CORE. Second, galactose induces the expression of I-SceI, which generates a double-strand break (DSB) at the recognition site. This DSB promotes intra-molecular homologous recombination between the repeat sequences, and leads to an excision of the CORE. As a result, a seamless modification is generated. This method can be adapted for a variety of genomic modifications and may provide an important tool to modify and design natural or synthetic genomes propagated in yeast

    Relevance of JAK2V617F positivity to hematological diseases - survey of samples from a clinical genetics laboratory

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>JAK2V617F is found in the majority of patients with Ph- myeloproliferative neoplasms (MPNs) and has become a valuable marker for diagnosis of MPNs. However, it has also been found in many other hematological diseases, and some studies even detected the presence of JAK2V617F in normal blood samples. This casts doubt on the primary role of JAK2V617F in the pathogenesis of MPNs and its diagnostic value.</p> <p>Methods</p> <p>In the present study, we analyzed JAK2V617F positivity with 232 normal blood samples and 2663 patient blood, bone marrow, and amniotic fluid specimens obtained from a clinical genetics laboratory by using a simple DNA extraction method and a sensitive nested allele-specific PCR strategy.</p> <p>Results</p> <p>We found JAK2V617F present in the majority (78%) of MPN patients and in a small fraction (1.8-8.7%) of patients with other specific hematological diseases but not at all in normal healthy donors or patients with non-hematological diseases. We also revealed associations of JAK2V617F with novel as well as known chromosomal abnormalities.</p> <p>Conclusions</p> <p>Our study suggests that JAK2V617F positivity is associated with specific hematological malignancies and is an excellent diagnostic marker for MPNs. The data also indicate that the nested allele-specific PCR method provides clinically relevant information and should be conducted for all cases suspected of having MPNs as well as for other related diseases.</p

    Covert Genetic Selections to Optimize Phenotypes

    Get PDF
    In many high complexity systems (cells, organisms, institutions, societies, economies, etc.), it is unclear which components should be regulated to affect overall performance. To identify and prioritize molecular targets which impact cellular phenotypes, we have developed a selection procedure (“SPI”–single promoting/inhibiting target identification) which monitors the abundance of ectopic cDNAs. We have used this approach to identify growth regulators. For this purpose, complex pools of S. cerevisiae cDNA transformants were established and we quantitated the evolution of the spectrum of cDNAs which was initially present. These data emphasized the importance of translation initiation and ER-Golgi traffic for growth. SPI provides functional insight into the stability of cellular phenotypes under circumstances in which established genetic approaches cannot be implemented. It provides a functional “synthetic genetic signature” for each state of the cell (i.e. genotype and environment) by surveying complex genetic libraries, and does not require specialized arrays of cDNAs/shRNAs, deletion strains, direct assessment of clonal growth or even a conditional phenotype. Moreover, it establishes a hierarchy of importance of those targets which can contribute, either positively or negatively, to modify the prevailing phenotype. Extensions of these proof-of-principle experiments to other cell types should provide a novel and powerful approach to analyze multiple aspects of the basic biology of yeast and animal cells as well as clinically-relevant issues
    corecore