15 research outputs found

    Overview of habitat history in subtropical oceanic island summit ecosystems

    Get PDF
    Summit ecosystems of oceanic islands constitute one of the most ephemeral and isolated ecosystems existing, harboring specific features that confer on their biota an outstanding distinctness. Summits are short-lived entities, being the last ecosystems to be constructed during the growth of the new oceanic island, and the first to vanish due either to island subsidence, island erosion, or both. Whereas their geological emergence/disappearance is controlled by the volcanic/erosion activity, Pleistocene glaciations in the past million years, by forcing the altitudinal shift of the timberline, have also likely created or destroyed summit ecosystems, enabling the appearance of alpine ecosystems during glacial maxima where they were not present in interglacial periods and vice versa. On the other hand, summit ecosystems constitute islands within islands, being more isolated from climatically similar ecosystems than the coastlines of the islands containing them. Thus summit biota, frequently displaying a high endemicity, may originate either through dispersal from other close summit ecosystems during peak periods, or from the colonization of the summits and later evolution to the new conditions from mid-altitude species of the same island. Conversely, if peak periods are absent, the disappearance of summit ecosystems implies the extinction or extirpation of their constitutive species. Current summit species have likely occupied a much larger area during glacial periods. Thus the summits may be classified as climatic refuges. This is especially the case if glacial periods were associated with much drier conditions on oceanic islands as is the case on continents

    Newly discovered seed dispersal system of Juniperus cedrus questions the pristine nature of the high elevation scrub of El Teide (Tenerife, Canary Islands)

    Get PDF
    As a working hypothesis, we examined evidence for the former presence of a climacic woodland of Juniperus cedrus above the pine forest in the high elevation area of Tenerife (Canary Islands), which would indicate that the current dominant vegetation (endemic Spartocytisus supranubius scrub) may not be pristine. The main causes of the great regression of this woodland were caused by human activities (timber harvesting, herbivory by goats, and fires). The main support for this hypothesis is the survival of a presumably relict seed dispersal system of the endangered endemic J. cedrus, which relies mainly on the wintering thrush Turdus torquatus. The fact that genetic factors are directly involved in the control of bird migration routes strongly supports the idea that this interaction could be remnant of an older system, probably more widespread in the past. To test this hypothesis, we propose that a paleoecological approach could reconstruct the vegetation dynamics in the Teide National Park (Tenerife) and the past presence of this seed disperser migratory thrush. The analysis of plant microfossils in sediments (e.g., pollen, spores, phytoliths, coprolites, and charcoal) would allow us to evaluate whether the current vegetation is the same as that which naturally existed in the past, and assess the impact of the anthropogenic and natural factors to which it has been subjected during history. The results of these analyses will be useful for future management policies and practices aimed at restoring the pristine landscape and biotic interactions of the Teide National Park. To our knowledge, the case presented in this contribution, based on the high dependence of the seed dispersal of an endemic tree (J. cedrus) on a migratory bird, is the only reported in the context of oceanic islands.Ministerio de Ciencia e InnovaciónGobierno de las Islas CanariasOrganismo Autónomo de Parques Nacionale

    Die rezenten Gletscher der Pyrenäen

    No full text
    No abstract available

    Sensitivität und Präzision der Pränataldiagnostik bei Lippen-, Kiefer-, Gaumenspalten

    No full text

    The effect of fire severity on first-year seedling establishment in a Pinus canariensis forest on Tenerife, Canary Islands

    No full text
    The Canarian pine (Pinus canariensis) exhibits a striking combination of high adult resistance to fire and intermediate serotiny. Hence, the study of its post-fire regeneration can support valuable new insights about functional adaptations to fire. Here, we analyse the firstyear seedling establishment after fire in a P. canariensis forest on the northern slope of Tenerife, Canary Islands. The effects of fire severity and other explanatory variables on the seedling density recorded 9 months after fire were examined. We detected a clear unimodal relationship between seedling density and fire severity, with maximum regeneration associated with intermediate fire severity and no regeneration associated with very high crown damage. The results suggested that high severity fires may have caused the partial destruction of the aerial seed bank and/or the creation of unfavourable seedbed conditions for germination and seedling emergence. The density of large pine trees, reflecting seed availability, was the second most important factor explaining the distribution of seedlings. Cover of scorched needle litter on the ground correlated strongly and positively with pine seedling density and negatively with fire severity. The complete lack of regeneration at sites most strongly affected by fire does not represent a major threat for the stand recovery of the Canarian pine, due to the very high tree resistance to fire and the tremendous capacity of the Canarian pine to resprout after fire. The observed very high seedling densities at sites with intermediate fire impacts can probably be related to both the complete liberation of the seed bank (including seeds stored in serotinous cones) and favourable micro-environmental conditions for seed germination and seedling establishment
    corecore