763 research outputs found
Analysis of the Copenhagen Accord pledges and its global climatic impacts‚ a snapshot of dissonant ambitions
This analysis of the Copenhagen Accord evaluates emission reduction pledges by individual countries against the Accord's climate-related objectives. Probabilistic estimates of the climatic consequences for a set of resulting multi-gas scenarios over the 21st century are calculated with a reduced complexity climate model, yielding global temperature increase and atmospheric CO2 and CO2-equivalent concentrations. Provisions for banked surplus emission allowances and credits from land use, land-use change and forestry are assessed and are shown to have the potential to lead to significant deterioration of the ambition levels implied by the pledges in 2020. This analysis demonstrates that the Copenhagen Accord and the pledges made under it represent a set of dissonant ambitions. The ambition level of the current pledges for 2020 and the lack of commonly agreed goals for 2050 place in peril the Accord's own ambition: to limit global warming to below 2 °C, and even more so for 1.5 °C, which is referenced in the Accord in association with potentially strengthening the long-term temperature goal in 2015. Due to the limited level of ambition by 2020, the ability to limit emissions afterwards to pathways consistent with either the 2 or 1.5 °C goal is likely to become less feasibl
Phosphorus donors in highly strained silicon
The hyperfine interaction of phosphorus donors in fully strained Si thin
films grown on virtual SiGe substrates with is
determined via electrically detected magnetic resonance. For highly strained
epilayers, hyperfine interactions as low as 0.8 mT are observed, significantly
below the limit predicted by valley repopulation. Within a Green's function
approach, density functional theory (DFT) shows that the additional reduction
is caused by the volume increase of the unit cell and a local relaxation of the
Si ligands of the P donor.Comment: 12 pages, 3 figure
Hadronic observables from SIS to SPS energies - anything strange with strangeness ?
We calculate and (+) rapidity
distributions and compare to experimental data from SIS to SPS energies within
the UrQMD and HSD transport approaches that are both based on string, quark,
diquark () and hadronic degrees of freedom. The
two transport models do not include any explicit phase transition to a
quark-gluon plasma (QGP). It is found that both approaches agree rather well
with each other and with the experimental rapidity distributions for protons,
's, and . Inspite of this apparent agreement both
transport models fail to reproduce the maximum in the excitation function for
the ratio found experimentally between 11 and 40 AGeV. A
comparison to the various experimental data shows that this 'failure' is
dominantly due to an insufficient description of pion rapidity distributions
rather than missing 'strangeness'. The modest differences in the transport
model results -- on the other hand -- can be attributed to different
implementations of string formation and fragmentation, that are not
sufficiently controlled by experimental data for the 'elementary' reactions in
vacuum.Comment: 46 pages, including 15 eps figures, to be published in Phys. Rev.
The CRESST Dark Matter Search
The current status of CRESST (Cryogenic Rare Event Search using
Superconducting Thermometers) and new results concerning the detector
development are presented. The basic technique of CRESST is to search for
particle Dark Matter (WIMPS, Weakly Interacting Massive particles) by the
measurement of non-thermal phonons as created by WIMP-induced nuclear recoils.
Combined with the newly developed method of simultaneous measurement of
scintillation light, strong background discrimination is possible, resulting in
a substantial increase in WIMP detection sensitivity. The short and long term
perspectives of CRESST are discussed.Comment: 12 pages, 6 figure
Self-Trapped Excitons in Ionic-Covalent Silver Halide Crystals and Nanostructures: High-Frequency EPR, ESE, ENDOR and ODMR Studies
Silver halides have unique features in solid state physics because their properties are considered to be of borderline nature between ionic and covalent bonding. In AgCl, the self-trapped hole (STH) is centered and partly trapped in the cationic sublattice, forming an Ag2+ ion inside of a (AgCl6)4− complex as a result of the Jahn–Teller distortion. The STH in AgCl can capture an electron from the conduction band forming the self-trapped exciton (STE). Recent results of a study of STE by means of high-frequency electron paramagnetic resonance, electron spin echo, electron–nuclear double resonance (ENDOR) and optically detected magnetic resonance (ODMR) are reviewed. The properties of the STE in AgCl crystals, such as exchange coupling, the ordering of the triplet and singlet sublevels, the dynamical properties of the singlet and triplet states, and the hyperfine interaction with the Ag and Cl (Br) nuclei are discussed. Direct information about the spatial distribution of the wave function of STE unpaired electrons was obtained by ENDOR. From a comparison with the results of an ENDOR study of the shallow electron center and STH, it is concluded that the electron is mainly contained in a hydrogen-like 1s orbital with a Bohr radius of 15.1 ± 0.6 Å, but near its center the electron density reflects the charge distribution of the hole. The hole of the STE is virtually identical to an isolated STH center. For AgCl nanocrystals embedded into the KCl crystalline matrix, the anisotropy of the g-factor of STE and STH was found to be substantially reduced compared with that of bulk AgCl crystals, which can be explained by a considerable suppression of the Jahn–Teller effect in nanoparticles. A study of ODMR in AgBr nanocrystals in KBr revealed spatial confinement effects and allowed estimating the nanocrystal size from the shape of the ODMR spectra
Invariance and variability in interaction error-related potentials and their consequences for classification
© 2017 IOP Publishing Ltd. Objective. This paper discusses the invariance and variability in interaction error-related potentials (ErrPs), where a special focus is laid upon the factors of (1) the human mental processing required to assess interface actions (2) time (3) subjects. Approach. Three different experiments were designed as to vary primarily with respect to the mental processes that are necessary to assess whether an interface error has occurred or not. The three experiments were carried out with 11 subjects in a repeated-measures experimental design. To study the effect of time, a subset of the recruited subjects additionally performed the same experiments on different days. Main results. The ErrP variability across the different experiments for the same subjects was found largely attributable to the different mental processing required to assess interface actions. Nonetheless, we found that interaction ErrPs are empirically invariant over time (for the same subject and same interface) and to a lesser extent across subjects (for the same interface). Significance. The obtained results may be used to explain across-study variability of ErrPs, as well as to define guidelines for approaches to the ErrP classifier transferability problem
- …