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Abstract.
Objective. This paper discusses the invariance and variability in interaction

error-related potentials (ErrPs), where a special focus is laid upon the factors
of (1) the human mental processing required to assess interface actions (2) time
(3) subjects. Approach. Three different experiments were designed as to vary
primarily with respect to the mental processes that are necessary to assess whether
an interface error has occurred or not. The three experiments were carried out
with 11 subjects in a repeated-measures experimental design. To study the
effect of time, a subset of the recruited subjects additionally performed the same
experiments on different days. Main results. The ErrP variability across the
different experiments for the same subjects was found largely attributable to the
different mental processing required to assess interface actions. Nonetheless, we
found that interaction ErrPs are empirically invariant over time (for the same
subject and same interface) and to a lesser extent across subjects (for the same
interface). Significance. The obtained results may be used to explain across-
study variability of ErrPs, as well as to define guidelines for approaches to the
ErrP classifier transferability problem.
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1. Introduction

Error processing and awareness mechanisms in the
brain lead to reproducible brain activity patterns,
which can be observed in scalp EEG time-locked to
events of errors. In general, these patterns are referred
to as error-related potentials (ErrPs) and are typically
taxonomized into four types: response, observation,
feedback and interaction ErrPs [1, 2]. This taxonomy
basically reflects the variability in the error potentials
with respect to changes in the tasks, in which they
have been observed. Response ErrPs were found to
be elicited after incorrect responses in speeded choice
reaction time (RT) tasks [3,4]. Observation ErrPs, on
the other hand, have been shown to be elicited after
observing errors committed by other humans [5] or
virtual devices [6,7] in different tasks including speeded
choice RT. Feedback ErrPs are elicited after negative
feedback (e.g. feedback of unfavorable results in time
estimation tasks) [8–10]. Finally, interaction ErrPs
were reported after feedback that indicates erroneous
interface actions [11, 12], and therefore they can be
thought of as a special case of observation and feedback
ErrPs.

The average difference waveform in the event-
related potential (ERP) structure between the error
and correct trials (error-minus-correct) is usually used
to highlight the ErrP components. For instance,
the difference waveform of response ErrPs has been
characterized by Falkenstein et al. [3] with a negativity
Ne (sometimes referred to as error-related negativity
ERN) and a later, more extended positivity Pe.
The sharp negative component, Ne, peaked at about
80 ms and was maximal at midline frontocentral scalp
locations, whereas the positivity, Pe, peaked in the
interval 200-500 ms after incorrect key presses [13].
The Pe was shown in a more recent study to
have two subcomponents, with frontocentral and
centroparietal distributions [14]. The negativity was
also observed in correct trials, however with smaller
amplitudes (referred to as correct-related negativity
CRN). According to [13], the presence of CRN
might indicate that the negativity Ne reflects the
comparison process itself (between the correct and
performed response) and not its outcome, and that the
independent component Pe reflects a later aspect of the
error processing, e.g. error awareness [14,15].

In addition to the temporal (phase-locked)
signature of errors in scalp EEG, spectral (phase- and

non-phase-locked) signatures were observed starting
just before incorrect presses in speeded motor
responses manifested as an increase in mid-frontal
theta band activity accounting for 57% of ERN peak
amplitude [16], and an increase in delta-power [4]. The
respective temporal and/or spectral signatures may
vary across the different types of ErrPs; nonetheless,
independent of the specific type of error potentials
and independent of the task performed, EEG and
fMRI studies in humans [8, 13, 17–19] and single-unit
studies in monkeys [20,21] have suggested the anterior
cingulate cortex (ACC), the supplementary motor
Area (SMA), and/or pre-SMA (all in the posterior
medial frontal cortex, pMFC) as candidates for a
common neural generator. This in turn suggests
that the different ErrP types are manifestations
of similar performance monitoring systems [22–25].
Furthermore, errors, and more specifically, conscious
errors, are accompanied by changes in autonomic
activity, like heart rate deceleration, increase in pupil
size, larger skin conductance responses and increased
amygdala activity [15].

Schalk et al. [11] were the first to report that EEG
signals that follow erroneous and correct selections
by a computer interface differ significantly. The
term interaction ErrPs has been coined later by
Ferrez et al. [12] to refer to this type of ErrPs.
Thereafter, there has been a special interest in
interaction ErrPs within the field of brain-computer
interfaces (BCIs), that concerns itself with providing
users, particularly those living with disabilities, with
control and communication abilities on the basis of
their measurable brain neural activity. Hereby, the
presence or absence of interaction ErrPs in scalp EEG
can be used as a means to respectively invalidate or
validate a first-stage BCI selection. The first selection
can be mediated based on P300, SSVEP or motor-
imagery (MI) signals, whose classification is known to
be prone to errors due to the inherent presence of noise
in scalp EEG. The amplitude of the noise (background
activity in the brain and bodily artifacts) can be of
several orders of magnitude above the amplitude of
ERPs [26,27].

First efforts to decrease error rates during BCI-
mediated interaction considered adding a response
verification (RV) step [28], where users needed to
confirm each selection by communicating an additional
one to the system. Reducing the time required for the
verification step might lead to improvements in the bit
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rate in addition to the accuracy improvement. It can
be shown, nonetheless, that if the interface parameters
remain the same (i.e. with respect to the number
of interface elements, time for a single selection,
interaction paradigm, etc.) for both the selection
and verification steps, a significant loss in achievable
bit rates is then expected for almost all levels of
single trial accuracies (see the supplementary material
for more details). On the other hand, integrating
the detection of ErrPs into different practical BCI
systems [11,12,29–33] improved both the accuracy and
the achieved bit rates. High false alarm (i.e. estimating
trials as erroneous when they are not) rates, however,
may degrade the achieved bit rate and interaction
speed [32].

Typically, training sessions that contain a consi-
derable amount of ErrP/noErrP examples are used to
learn classification boundaries that separate the two
classes. For the different types of BCIs, including those
based on ErrPs, it is generally desirable to reuse previ-
ously recorded sessions in training classifiers that can
be used across different tasks, on different days, or/and
with different subjects [34]. This is, however, made
difficult, with the considerable (between and within-
subjects) fluctuations in the underlying statistics of
the brain patterns under consideration [35, 36]. Fluc-
tuations, due to the non-stationarity dynamics of the
brain, may result in trial-to-trial variability [37] and
latency jitter of the ERP components on session-to-
session basis [38] and may lead to reduced accuracy
levels when going from the calibration (i.e. training)
phase of classifiers to their online usage, even with the
same subjects, on the same days and with the same
interfaces/tasks [36,39].

However, and apart from the EEG non-
stationarity, there exist invariant features that make
ErrPs visible and reproducible in the first place. In
the present work, it is investigated whether there are
invariants of interaction ErrPs and the consequences
these invariants, if any, might have for their classifica-
tion. Our main focus was to check possible invariants
with respect to: (1) human mental processes that are
required after feedback onset (2) time (3) subjects.

The variability in interaction ErrPs across the
different levels of a certain experimental factor is
expressed hereby in terms of the observed differences in
the temporal evolution and morphology of the average
ErrP waveforms. The notion of invariance, on the
other hand, is used throughout this work as underlying
this very notion of variability. Hereby, the association
between the two terms is similar to that in studies of
speech processes (e.g. [40]), where despite the existing
between and within-talker variability with respect to
speech signals (e.g. vocal pitch, volume, fluency),
there are invariant features that allow their listeners

to recognize the intended meaning. By analogy, it is
reasoned here that should there exist some statistically
invariant features of interaction ErrPs across the
different levels of a certain experimental factor, then
data obtained at a certain level can be used reliably
to draw a linear plane separating error and correct
trials obtained at different level(s). Invariance with
respect to a specific factor is hereby measured with the
accuracy of classifier transfer across the different levels
of this factor. Classification accuracies are quantified
by the normalized mutual information (NMI), which
is used to summarize the classification sensitivity and
specificity with a single metric [2].

In order to answer the questions raised above,
three different experiments and tasks were designed
and conducted with different subjects. The first ex-
periment is quite similar to the keyboard-based cursor
movement in [12] and the other two experiments, simi-
lar to [30], were based on P300-mediated interaction.
Some closely related work to ours exists in [41] for ob-
servation ErrPs and [42] for different types of errors.
The main result of this work is that we show that in-
teraction ErrPs (1) are highly sensitive with respect to
the mental processing required to assess interface acti-
ons (2) are quite empirically invariant over time for
the same interface (3) have invariant features across
subjects for the same interface. It is also observed
that ErrPs are sensitive to the details of the EEG pre-
processing pipeline. This may explain the ErrP vari-
ability across studies of similar nature regarding the
mental processes of the interface actions.

Prior research on ErrPs have partially tackled
some of these issues at separate occasions (see
Section 2), which helped to formulate first hypot-
heses and guided the design of the three interfa-
ces/experiments. With this work, the aim is to ground
irrelevant factors in the experimental design and in
the pre-processing pipeline so that concrete conclusi-
ons can be drawn with respect to the different sources
of invariance and variability under consideration. To
the best of our knowledge, this is the first work that
tackles such sources from a unified perspective.

This paper is structured as follows. Section 2
provides a short review on related work and similar
experiments to ours. Section 3 reports the materials
and the design of the different experiments conducted
in this work. Experimental results are presented in
section 4 followed by a discussion in section 5. This
paper concludes with section 6.

2. Related work

There is a plethora of work in the literature that
examined the presence of interaction ErrPs and their
detection with many different interfaces and tasks.
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Across these studies, one can observe that many
aspects remained invariant whereas many others have
shown great variability. The current work builds
on findings from these studies and tries to extend
our understanding of the sources of variability and
invariance in interaction ErrPs.

2.1. Invariance with respect to human mental
processes consequent to the feedback onset

In one-dimensional cursor control using MI-based BCI
(based on modulation of µ and β rhythms) [11], it
has been shown that the difference waveform (error-
minus-correct) is characterized by a positive potential
centered at the vertex peaking around 180 ms. Despite
that the cursor was required to be moved incrementally
towards the goal, the error and correct trials were
defined solely based on the correctness of the final
destination. In quite similar experiments [12], the
MI-based interface was simulated by keyboard presses
and each intermediate step towards the goal was
labeled either as a correct or erroneous trial. The
difference waveform time-locked to cursor movements
(i.e. feedback onset) was shown to have a sharp
negative peak after 250 ms (N2) followed by a positive
peak after 320 ms (P3) and a second broader negative
peak after 450 ms (N4). These peaks clearly differ from
the positive potential in [11], and this discrepancy can
be attributed to the different mental processes required
to evaluate whether or not a cursor arrives at the target
goal and whether or not it just moves towards it [29].

Similarly, in experiments where subjects observed
and evaluated the movements of a virtual device
towards cued goals, Iturrate et al. [41] have shown
that slight changes in the performed tasks lead to
significant differences in the peak latency of N2, P3
and P4 in observation ErrPs. The tasks differed only
in the way the virtual device moved with respect
to the cued goals (either with incremental steps
in a horizontal and vertical grids or with a single
jump). The observed signal variations were shown
additionally, to make it difficult for a classifier trained
with data from one task to straightforwardly transfer
to other ones. Yet, recalibration and adaptation of
the learned classifier (by adapting the means of correct
and incorrect trials to the new task) provided fairly
good results when a few training examples for the new
task were available [41]. Further, using three different
experimental protocols in [43], where users evaluated
the movements of a virtual square, a simulated robotic
arm and a real robot arm, differences in peak latencies
of P3 and N4 in observation ErrPs across these
experiments were reported to be significant, whereas
differences in peak amplitudes were not. As the
average waveforms of correct and error trials were
observed to be similar with respect to the general shape

across experiments, correcting single trial data for the
observed latency differences was shown to enhance
classifier generalizability across tasks.

Furthermore, in a simple video game task with
continuous feedback, where users used a gamepad to
control a cursor to avoid collisions with blocks dropping
from the top of the screen with constant speeds,
different kinds of errors were found to produce different
and distinguishable ErrP waveforms with different
spectral contents [2, 42]. The examined errors were
either due to inaccurate feedback (i.e. cursor moved
deliberately in directions that differ from the user
input) or due to failing to achieve target goals (i.e. user
input led to collisions with the moving objects). The
two errors were respectively referred to by the authors
as execution and outcome errors. Our thinking is that
such differences in the morphology of the difference
waveforms across the two types of errors stem from
the different mental processes required to assess the
feedback stimuli. In particular, the shape and the
scalp topography of execution errors are reported to
have N2, P3 and N4 components, similar to those
reported in interaction ErrPs [12] and observation
ErrPs [41], where judging the correctness of interface
actions is achieved by mentally evaluating whether a
cursor moved as signaled/expected or not.

On a different vein, some variability in the
ErrP waveforms can be observed across hybrid P300-
ErrP systems, where different feedback presentation
methods have been deployed. For instance, authors
in [29, 44, 45] adopted a central feedback presentation,
whereby the selected character was shown overlaid at
the center of the spelling matrix, 1 second or more
after the row-column flashing is stopped. The central
feedback strategy was also employed in a modified way
in [30], where the character presentation is preceded
by a presentation of an empty square at the center
of the display aiming at attracting the user visual
attention to that spot before the estimated character
is presented at the same location on the display. This
way, ocular artifacts can be reduced. The observed
grand average difference waveform at Cz for a group
of healthy subjects was characterized by a negativity
at around 348 ms and a later positivity at around
465 ms [30]. Alternatively, the feedback in [46] was
done by replacing all the matrix elements with the
estimated one.

It can be observed from this short review of the
available hybrid P300-ErrP systems that the main
concern of designing the feedback presentation was to
avoid possible ocular artifacts that may accompany
the onset of the feedback. However, we argue that
changing the style of feedback presentation leads
also to recruiting different mental processes to assess
the feedback stimulus, and therefore observed ErrPs
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signals vary as a byproduct. For instance, the
central feedback, when used in language spelling
tasks, requires that the users remember (though for
a very short time) the last character, to which they
attended, and compare it with the estimated one.
Users may not need to perform this comparison (or
even memorization) when the replacement feedback
in [46] is used, since in this case a visual change
of the character at the attended place in the P300
matrix simply means that the interface made an error.
Consequently, one can observe a great discrepancy in
the two ErrP waveforms in [30] and [46] (polarities
of the different peaks in the two signals appear to be
reversed).

2.2. Invariance with respect to user input

In an attempt to reduce the time required to collect
ErrP/noErrP training data, Schmidt et al. [32] have
designed a calibration keyboard-based experiment for
the P300 center speller [47], in which the post-feedback
behavior of the interface is identical to that in the
P300 case. This way, authors make sure that the
mental processes required to assess the feedback as
correct/erroneous are identical across the keyboard-
calibration and P300-online conditions. Herein, visual
inspection of the grand averages of the erroneous
and correct trials reveals a great similarity across
the two tasks with respect to the general shape.
However, the error negativity (Ne) and positivity (Pe)
of the difference waveform were observed with stronger
amplitudes and earlier in time in the online condition
compared to calibration. A linear discriminant analysis
(LDA) classifier for interaction ErrPs trained with
data from the calibration experiments was shown to
transfer, however with a reduced performance, to the
P300-based online sessions.

Furthermore, Kim and Kirchner [7] designed a
task to compare observation ErrPs (users observed the
movement of a cursor with no input whatsoever) and
interaction ErrPs (users controlled the movement of
a cursor with a noisy keyboard). Hereby, interaction
ErrPs appeared after cursor movements in directions
that do not match the user’s keyboard presses, while
observation ErrPs appeared when an observed agent
moved in directions that deviate from a hard-coded
path. It was observed that the grand average difference
waveforms of the two ErrP types have similar shapes
in the early time region 0.16-0.4 s, but exhibit different
shapes in the late time region 0.4-0.8 s. Arguably,
this discrepancy might be attributed to the overlap
of errenous and correct trials as a result of the used
experimental paradigms, and/or the fact that the two
tasks differed in that key presses were self-paced in
the interaction task and hard-coded within predefined
intervals in case of the observed agent. The authors

have shown that a linear support vector machine
(SVM) classifier learned from the observation ErrPs
can successfully transfer to interaction ErrPs. The
classifier transfer in the reverse direction (i.e. from
interaction to observation) was also successful but with
a reduced performance.

Taking advantage of these results, it may be
assumed that if two tasks differed with respect to the
type of the user input, and a sufficient time gap was
introduced between the arrival time of the user input
and the onset time of the feedback stimulus, then any
observed variability in the ErrP waveforms consequent
to the feedback onset across the two tasks is most likely
caused by other factors than the discrepancy in user
input.

2.3. Invariance with respect to time

Ferrez et al. [12] have shown interaction ErrPs
to be stable over time as the average difference
waveforms and scalp topographies remained similar
for two recordings spaced about three months apart.
Additionally, a Gaussian classifier trained with data
from the first recording was reported to produce
relatively high accuracy levels (about 80%) when
applied on the data from the second recording.

2.4. Invariance with respect to subjects

It is argued in [48] that ERN is a subjective response
that is influenced by individual differences in cognitive
modeling of what is being correct/incorrect. This is
supported by evidences from different studies which
show e.g. that the magnitude of ERN is correlated
with the level of academic performance of subjects [24]
and that the level of ACC and pre-SMA activation and
magnitude of ERN is correlated with age [49,50].

However, despite this inter-subject variability,
no significant difference in peak latency or peak-
to-peak amplitude of interaction ErrPs has been
observed across the groups of healthy and motor-
impaired subjects [30]. Further, it has been shown
in [7, 51] that a classifier learned from examples of
interaction ErrPs obtained from the EEG of several
subjects time-locked to erroneous/correct interactions
can transfer to new subjects performing the same task
with relatively good accuracy (75% on average). The
across-subjects classifier transfer, for most subjects,
performed worse than a classifier transfer among
different types (observation to interaction and vice
versa) of ErrPs within the same subjects [7].

3. Material and methods

It can be summarized from the previous review that
the interaction ErrPs exhibit some invariance across
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subjects and over time, which was also confirmed
with the possible classifier transfer across these factors.
In this work, we argue that the discrepancy in the
mental processes required to assess interface actions
accounts for much of the variability observed across
different studies. This hypothesis is tested in the
present work using a repeated-measures experimental
design, where the same subjects performed three
experiments on different days. The tasks in two
experiments are designed to be exactly the same,
except for the way the visual feedback is provided to
users. Additionally, to ground the effect of time, a
small sample of the recruited participants performed
the same experiments, for multiple times on different
days.

3.1. Subjects

A total of 11 healthy adults (7 male, 4 female) aged
27.4 ± 5.7 (range 19 − 39) served as paid volunteer
subjects in this study. S10 was left-handed and all
subjects except S2 had normal or corrected-to-normal
vision. Subject S2 had extreme hyperopia in the left
eye. All subjects were näıve as to the purposes of the
experiments. Subject S11 was excluded from the study
for not being able to use the P300 speller.

3.2. Data recording

During the different experiments, the participants
were seated 0.7 m away from an LCD monitor on
a comfortable armchair in a slightly dimmed room.
All participants gave their written informed consent.
Participants were additionally asked to fill in pre-
and post-questionnaires, that were meant to collect
data about the level of tiredness before and after the
experiment in addition to some demographical data.
This data, however, was not used for the purposes of
this study.

Scalp EEG signals were recorded from 28
electrodes positioned according to the international
extended 10/20 electrode system at F7, F3, Fz, F4,
F8, FC5, FC1, FCz, FC2, FC6, T7, C3, Cz, C4, T8,
CP5, CP1, CPz, CP2, CP6, P7, P3, Pz, P4, P8, PO7,
POz and PO8 as shown in figure 1. Similar to [52,53],
Electrooculogram (EOG) traces were obtained from
electrodes F9, F10, FP2 and an additional electrode
placed directly below the right eye. EEG and EOG
electrodes were referenced to the right earlobe and
the ground electrode was positioned at FPz. The
horizontal bipolar EOG (HEOG) signal was computed
from the raw data of electrodes F9 and F10. Similarily,
vertical bipolar EOG (VEOG) was computed from FP2
and the electrode placed below the right eye.

EEG and EOG data were measured with
sampling rate of 256 Hz at full DC using g.USBamp
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Figure 1: EEG/EOG electrode placement.

acquisition system (g.tec medical engineering GmbH,
Schiedlberg, Austria). All electrodes were filled with
highly conductive gel in order to reduce impedance.
Participants were free to move their eyes during
the recordings, but were instructed to reduce all
unnecessary muscular activity.

3.3. Experimental paradigms

In the present study, three different experimental pa-
radigms (to be explained in the following subsections)
were designed to investigate interaction ErrPs. Parti-
cipants were required to complete one experiment per
visit and therefore they visited the laboratory on three
separate occasions spaced few days apart. Half of the
participants did Exp. II, I and III on the first, second
and third visit/day, respectively. The other half did
the experiments in the order III, I and II. Additionally,
in order to examine the invariance and variability of
ErrPs over time, some participants were invited to re-
visit the lab for additional times, where they repeated
experiments they have already completed in the first
three visits/days. These participants ended up doing
the same experiment twice on separate days. Subject
S1 repeated the second experiment three times. We
will refer to different recordings of the same experi-
ment as the 1st, 2nd and 3rd recordings for these sub-
jects. Each experiment consisted of multiple sessions,
where each session lasted around 11 min. Since it is im-
portant to maintain a high attention level during task
operation, breaks were given between sessions and sub-
jects were free to stop a recording session at any time.
Each experiment lasted for around 2 hours, including
the preparation and break times. Break times were
paced by individual subjects and were overall in the
range 1-15 min. Consequently, the number of recorded
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g.USBamp
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System

Recording &
Processing
Computer

Stimuli
Visualization
Computer

Figure 2: System overview showing the main modules.
Recording and stimulation were done on the same
machine for Exp. I. Visual stimuli were presented on
a 60 Hz LCD monitor.

sessions and trials varied across subjects.
In all experiments, participants were instructed

to mentally evaluate the interface actions as correct
or erroneous. Figure 2 shows the main modules used
for the experimental setup in all three experiments,
where the acquisition of the data and offline processing
were facilitated with Simulink/MATLAB software
(MathWorks, Massachusetts, United States). The
experimental design for each of the experiments is
described in the following subsections, and a summary
that relates the respective tasks and explains the
reasons behind their choice will be presented in
subsection 3.3.4.

3.3.1. Experiment I: Keyboard-mediated ball game task
Very similar to [12], participants were instructed to use
the left and the right arrow keyboard keys in order to
move a ball towards a hole (respectively the sphere and
the rectangle in figure 3), where both were aligned to
the same horizontal line at the middle of the display.
Each game run started with the ball randomly placed
5 steps away from the hole, either to the right or to
the left with equal probabilities. In this work, we refer
to all trials that are recorded while the hole is being
to the right of the ball as right trials and otherwise
as left trials. Following each key press issued by the
participant, the ball moved one step in the direction
of the pressed key with a probability of 80% and in
the opposite direction with the remaining probability.
In order to isolate motor-related potentials due to
key presses from potentials following the feedback
presentation, the ball appeared in the new location
τ s after each key press, where τ is uniformly drawn
in the interval [0.9, 1.1] s. Immediately after key
presses, the color of the ball turned from green into
red, indicating that further key presses will be ignored
and the ball remained red for a period of 2 s. Subjects
were instructed not to try to interact with the ball
during this time. Once the ball reached the hole, a new
game run was started after 2 s. Each subject finished

t

t1

t2

t3

t4

Figure 3: Key events in the keyboard-based interaction
experiment. At time t1, the user presses the key which
brings the ball towards the hole (left key in the shown
case). In the next display frame, the ball turns red
and stays in place for a duration randomly drawn from
the interval [0.9, 1.1] s. Afterwards at t3, the ball
moves one step either to the right or the left according
to user input and the error random generation. The
ball remains inactive (red) after this movement till t4.
Shown is the correct case here and therefore EEG data
time-locked to t3 is considered a correct trial (noErrP).
Note that t4 − t1 = 2 s.

multiple sessions and depending on the individual
interaction pace, each session consisted of a varying
number of runs and consequently a varying number of
ErrP/noErrP trials.

3.3.2. Experiment II: P300-based interaction with
central feedback
A P300 training session was first performed in copy
spelling row-column flashing mode using a 6x6 spelling
matrix containing the alphanumerals. This session,
which lasted around 4 minutes, started with one
character briefly highlighted in green on the P300
matrix. Participants were instructed to attend to
the cued character during the flashing sequence that
followed and consisted of 16 repetitions. In a single
repetition, all rows and columns were flashed in a
random order, where in each flashing, a row or a
column was highlighted on the screen for 100 ms
and the time between the onset of two consecutive
flashes was set to 183.34 ms. Following the end of
the complete flashing sequence, a different character
was highlighted in green, followed by another complete
flashing sequence. This procedure was repeated till
5 characters were cued, each followed by a complete
flashing sequence. As such, during this session,
participants did not actively produce any spelled
character.

An LDA classifier was learned from this training
session and used to estimate the hidden user intentions
in the following online P300 sessions. In order to
facilitate the acquisition of ErrP and noErrP training
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examples in the online P300 sessions, we have designed
a simple mathematical task, wherein participants were
instructed to attend to the maximum number in a
5x5 P300 matrix (example is shown in figure 4). The
P300 matrix in every new trial was filled with new
random numbers, generated so all of them except
one, were either 1 or 2-digit numbers. The remaining
number, which was the maximum, consisted of 3 digits.
Participants were informed about the fact that only
one number consisted of 3 digits. This renders the
mathematical task very simple or rather reduced to a
simple visual search task, where the possibility a user
makes a mistake by him/herself is minimized. Every
ErrP/noErrP trial started with a new set of numbers
randomly drawn and distributed within the P300
matrix, so that the location of the target maximum
number was changed with every new trial. The
update of the P300 matrix was facilitated by the XML
interface described in [54]. In order to collect as many
labeled ErrP and noErrP trials as possible, the flashing
sequence in each trial was restricted in most cases to
two repetitions. The accuracy of spelling, however,
was monitored throughout the different sessions and
the number of repetitions was sometimes modified
to keep a relatively balanced number of ErrP and
noErrP trials for each subject. Precisely, when a
subject made many errors during a specific session,
the number of repetitions per trial was increased in
subsequent sessions so that the error rate could be
reduced. In contrast, the number of repetitions was
reduced following low error rates. The number of
repetitions was never below 2 and error rates in the
range 40-60% did not imply any change in the used
number of repetitions.

After a decision was made about the user intent
in the online P300 sessions, flashing was stopped and
the mask was completely emptied for a duration of
one second. Then, an empty square was shown at the
center of the display for one second, aiming at directing
the user’s gaze to this location [30]. The estimated
user intent (number) was shown afterwards inside the
square for another second. The time between the end
of the last flash and the presentation of the estimated
number was therefore 2 seconds. Figure 4(a) shows
the key events in a single ErrP/noErrP trial. Each
subject underwent a different number of sessions, each
consisted of a different number of ErrP/noErrP trials.

It is noteworthy here that the P300 training and
online sessions differ with respect to the task (spelling
vs. finding maximum number) and the matrix size
(6x6 vs. 5x5). Hereby, the straightforward classifier
transfer across these sessions confirms previous findings
that P300-based BCIs generalize across different
operational tasks [39, 41, 55, 56], and across different
matrix sizes [57].

3.3.3. Experiment III: P300-based interaction with
inplace feedback
This experiment shared all details of Exp. II except
the way the feedback was shown to users. Hereby, the
mask remained displayed after flashing was stopped for
2 s and the estimated number was then highlighted for
1 s with a red square as shown in figure 4(b). After
highlighting the estimated number, the P300 matrix
was updated with a new set of random numbers.

3.3.4. Interrelation among experiments
Exp. II and III differ only with respect to the style of
feedback presentation. On the one hand, should the
central method be used for feedback presentations as
in Exp. II, subjects need to test whether the presented
number is a 3-digit number or not. On the other hand,
to assess the correctness of interface actions in case of
Exp. III, no comparison is necessary, as noticing that
the visual feedback is shown on the P300 matrix over
a place that does not match the previously attended
one is sufficient to realize that an error has occurred.
Thus, the feedback presentation in erroneous trials
in this case is expected to be the target of a rapid
eye movement (i.e. saccade). About 200 ms [58] are
typically required for the eye to make such a movement.
For correct trials, the feedback is shown overlaid on the
previously fixated number, and therefore no saccades
are expected to take place. It can be argued for
Exp. III, therefore, that the processing of the feedback
stimuli in case of erroneous trials starts at a later point
in time compared to correct ones.

Obviously, the two feedback strategies in Exp.
II and III require different mental processes to
arrive at a decision whether the estimated number
is correct or not. As such, these two experiments in
particular enable us to examine invariance/variability
of interaction ErrPs during P300-mediated interaction
with respect to the required mental processing.

The reasons we chose the maximum number task
in these experiments are threefold. Firstly, this
task requires no memorization of the last attended
letter at the time of feedback onset as it is the case
in spelling P300 applications with central feedback,
which may reduce the effects of mind wandering and
attentional lapses [59]. Secondly, the task allows to
collect ErrP/noErrP trials without relying on copy
spelling and sham feedback modes, allowing for better
resemblance of P300-based online interaction. Thirdly,
with the continuous updating of the P300 matrix, the
task simulates the case of interacting with an adaptive
P300 interface, which updates its contents based
on the current context in a dynamic environment.
Such adaptivity can be of high importance to enable
enhanced interaction in robotic BCI applications [56].

Exp. I differs from both Exp. II and III with
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1 s1 s1 s3.67 s4 s
t

(a) Central feedback presentation (Experiment II)

1 s2 s3.67 s4 s
t

(b) Inplace feedback presentation (Experiment III)

Figure 4: Key events in experiments II and III. The flashing time (3.67 s) is shown as an example for the case
when two flashing repetitions were used.

respect to the user input (keyboard vs. P300), where
we also introduced about 1 s delay between the user
input and the feedback onset in Exp. I and 2 s in
Exp. II and III. The 1 s delay in Exp. I and the 2 s
delay in Exp. II are sufficient to respectively isolate
hand-movement and eye-movement-related potentials.
The 2 s delay in Exp. III was chosen to match that of
Exp. II. Supported by the remarks from subsection 2.2,
the main difference in our understanding between
the different experiments, is the mental processing
required to assess the movement of the ball in Exp. I
compared to the processing of the central and inplace
feedback in the P300-based interaction experiments.
Furthermore, the presence of EOG artifacts that
accompany feedback onset in Exp. I will be useful to
understand the effect of these artifacts in Exp. I and
III.

3.4. Classification

Two binary classification problems are encountered
within this work with the goal of discriminating
between target and nontarget flashes (in Exp. II and
III) and between single trial ErrP and noErrP (in all
experiments). In both cases, the goal is to find a
mapping function h : X → Y, that maps from the
domain of the d-dimensional feature space X = Rd to
the range of class labels Y = {ω1, ω2}.

In supervised classification methods, h is learned
from a training dataset (D) containing n = n1 + n2
tuples of observations and their labels, i.e.

D = {(x(1), h(x(1))), (x(2), h(x(2))), · · · (x(n), h(x(n)))},

where h(x(i))) ∈ {ω1, ω2} ∀i, and n1 and n2
are the number of available examples for class ω1

and ω2, respectively. LDA assumes two normal
distributions for the two classes, such that x|ω1 ∼
N (µ1,Σ1),x|ω2 ∼ N (µ2,Σ2), and that the two
classes share a common covariance matrix (i.e. Σ1 =
Σ2 = Σ). The LDA-based mapping function can be
computed with hLDA = sign(wTx + b), where w and
b to be learned from D with class labels mapped to
ω1 = 1, ω2 = −1. The weighting vector can be
computed with w = Σ−1(µ1 − µ2) and the bias with
b = −1

2 (µ1 + µ2)Tw.
Since the true means and covariance matrices

for each class are unknown, estimates thereof are
substituted for the computations of w and b. The
sample means are computed with µ̂1 = 1

n1

∑i=n1

i=1 x(i)

and µ̂2 = 1
n2

∑i=n
i=n1+1 x(i), and the pooled sample

covariance matrix is computed with

Σ̂ = 1
n−2

[
(n1 − 1)Σ̂1 + (n2 − 1)Σ̂2

]
, where Σ̂1 and

Σ̂2 are the within-class sample covariance matrices,
which can be estimated with
Σ̂1 = 1

n1−1

∑i=n1

i=1 (x(i) − µ̂1)(x(i) − µ̂1)T and

similarly for Σ̂2. These estimates of the covariance
matrices are known as the maximum likelihood (ML)

estimates, which fail to provide invertible Σ̂ when
n < d [60]. As a remedy in such situations, we
adopted the analytical shrinkage covariance estimator
proposed in [60] (using function cov_shrink() from
BCILAB [61]). Throughout this paper, we will refer
to the LDA with ML covariance estimator as ML-
LDA and with the shrinkage estimator as shrinkage-
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LDA. The former is used to classify P300 trials (since
n1, n2 > d) and the latter is used to classify ErrP trials
(as fewer number of trials were acquired especially for
Exp. II and III).

3.5. Pre-processing and feature extraction pipeline

Pre-processing and feature extraction of P300 and
ErrPs differ fundamentally as a result of differences
in their spatial, temporal and spectral characteris-
tics. The P300 pipeline used here is based on pre-
vious works [62, 63] that have shown good classifica-
tion/spelling accuracies with LDA classifiers, and was
decided upon before our recordings took place to fa-
cilitate discriminating target and nontarget trials in
online P300 sessions. The ErrP pipeline was, on the
other hand, adopted post hoc to facilitate our offline
analysis.

3.5.1. P300 pre-processing and feature extraction
Only a subset of the EEG electrodes (Fz, Cz, P3,
Pz, P4, PO7, POz and PO8) were used for P300
classification during experiments II and III, since P300
is believed to have a central and parietal distribution.
Additionally, EEG data from these electrodes were
shown to lead to relatively good P300 classification
accuracies [64]. The continuous raw data from these
8 electrodes were notch-filtered at 50 Hz, bandpass-
filtered with a 4th order butterworth filter in the range
0.5 − 20 Hz (since P300 is believed to be composed
of phase-locked delta, theta and alpha oscillations [65–
68]) and downsampled to 64 Hz.

Event-locked EEG epochs of 800 ms duration
were extracted from the pre-processed continuous data
about the onset of each target/nontarget flash, i.e.
a baseline of 100 ms pre-stimulus and 700 ms post-
stimulus. The temporal mean of the baseline at each
electrode was then subtracted from the post-stimulus
data. A schematic of this pre-processing pipeline is
depicted in figure 5(a).

Features per electrode were obtained by downsam-
pling the epoched data with a factor of 3, and features
from the 8 electrodes were finally concatenated to form
the labeled feature vectors (with a resulting dimensio-
nality of 8 × d0.7 × 64/3e = 120). Each training ses-
sion produced respectively around 160 and 800 target
and nontarget training trials, which were used to train
an ML-LDA classifier. In online sessions, feature vec-
tors were obtained with the same pre-processing and
feature extraction pipeline, where the unknown label
of each feature vector was estimated with the learned
ML-LDA classifier. Noteworthy here is that we did not
aim at optimizing the accuracy of the P300-based in-
teraction during the performed experiments (e.g. by
using shrinkage-LDA to classify target/nontarget flas-
hes [37] or by optimizing the number of repetitions),

Channel
Selection
(8ch)

Bandpass
Filtering

(0.5-20 Hz) &
Downsampling

to 64 Hz

Epoch
Extraction

[−100, 700] ms
& Basline
correction

Experimental events

Raw data
256 Hz

Epoched
data

(a) P300 Pre-processing

Bandpass
Filtering
(1-10 Hz)

Common
Averge

Re-reference

Epoch
Extraction

[−500, 1000] ms
& Baseline
Correction

Raw data
256 Hz

Experimental events

Epoched
data

(b) ErrP Pre-processing

Figure 5: The different pre-processing and epoch
extraction pipelines for P300 and ErrP. Feature
extraction is performed on the epoched data.

but rather at collecting as many ErrP and noErrP
single trials as possible, with a reasonable number of
flashing repetitions.

3.5.2. ErrP pre-processing and feature extraction
The continuous EEG data from all 28 electrodes were
first bandpass-filtered with a 4th order butterworth
filter in the range 1 − 10 Hz (since ErrP is believed
to be relatively slow cortical potentials [12,42,69]) and
then re-referenced to the common spatial average (i.e.
the spatial mean was subtracted from each channel) to
enhance SNR. EEG epochs in the period [−0.5, 1.0] s
time-locked to the feedback onset were extracted from
the pre-processed EEG data and corrected for the
500 ms pre-stimulus baseline (i.e. the temporal mean
of the baseline data was subtracted from the post-
stimulus data). This pipeline is schematically shown
in figure 5(b).

Features per electrode were obtained by downsam-
pling the epoched data by a factor of 8. Feature vectors
were then obtained by concatenating features in the
time region [0.15, 1] s following the feedback onset from
the 5 midline electrodes (Fz, FCz, Cz, CPz and Pz), re-
sulting in a dimensionality of 5×b0.85×256/8c = 135.
Hereby, the selection of the midline channels is sup-
ported by the fact that ErrPs exhibit a fronto-central
distribution along the midline [12] and that features
from the central brain regions result in superior clas-
sification accuracy when compared to the peripheral
regions [51].

3.6. Analysis of interaction ErrP invariance and
variability

3.6.1. Neurophysiological analysis: The average cor-
rect and error potentials were computed per subject
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from EEG epochs of 1.5 s duration extracted about
the feedback onset consisting of 0.5 s pre-stimulus and
1 s post-stimulus data. We base our analysis hereby
mainly on the grand EEG average (i.e. the average
over subjects) of the correct and error trials, to which
we will refer respectively as the GAC, GAE. The grand
average difference waveform (i.e. GAD) is simply the
difference between GAE and GAC. All waveforms will
be shown for either the frontocentral electrode FCz or
the vertex (i.e. Cz), since several studies have poin-
ted out a strong role of the ACC and adjacent fronto-
central brain areas in monitoring errors [70].

Epochs, which contained, within the first post-
stimulus second, EEG potentials outside the range
±50µV or EOG potentials outside the range ±200µV
were excluded from the average computation, aiming
at preventing strong ocular (e.g. eye blinks) artifacts
from appearing in the average signals.

Statistical analysis of the difference between
GAE and GAC signals within each experiment
is performed using the adaptive factor adjustment
procedure described in [71], controlling for the false
discovery rate (FDR) at the 0.05 level. To this end,
the function erpfatest from R ERP package is used.

Additionally, the signed r2 discriminability
test [41, 72] is performed on correct and error trials
of each subject in order to highlight the major spatial
and temporal sources of variance among them within
the different experiments. Intuitively, the unsigned r2

quantifies the proportion of the total amplitude vari-
ance that is explained by the ground truth labels of the
acquired sample data. Formally, it is computed for a
certain feature with

r2k =
cov(xk,ω)2

var(xk) var(ω)
, (1)

where the vector ω is constructed from all the sample
labels, i.e. ω = [h(x(1)), h(x(2)), · · ·h(x(n))]T and xk is
constructed by concatenating the kth element of the d-
dimensional feature vectors. The signed r2 is computed
with r2 ·sign (cov (xk,ω)). Similar to [11], r2 is used to
assess the signal-to-noise ratio (SNR) of the different
ErrP peaks.

3.6.2. ErrP classification: A 10-fold cross-validation
was used to evaluate the performance of the shrinkage-
LDA classifier in predicting the correct (noErrP)
and incorrect (ErrP) trials obtained during the
different experiments. In order to better estimate
the classification accuracy in online sessions, all
extracted trials, including the ones with strong ocular
artifacts, were used for the classifier training and
testing. Accuracy is reported in terms of the true
positive rate (TPR or sensitivity) and true negative
rate (TNR or specificity), which respectively reflect
the rate of correct decoding of erroneous and correct

trials. The different experimental tasks produce
imbalanced data sets (i.e. numbers of ErrP and
noErrP trials are different), typically resulting in
biased classification towards the majority class [51].
As a remedy, the normalized mutual information
(NMI) [2] was additionally adopted as a single metric
that incorporates both sensitivity and specificity. The
reader is referred to [2] for the exact definition of NMI
and its computation procedure, but it is important to
note that NMI lies between 0 and 1, with the values
0 and 1, respectively reflecting chance-level (i.e. no
class structure is found by the classifier) and perfect
classification accuracy.

Furthermore, in order to quantify the invariance in
ErrPs with respect to the different experimental factors
(subjects, time and mental processes required to assess
interface actions), the accuracy of classifier transfer
across the different levels of these factors are reported.
In particular, with respect to subjects, we choose to use
per-experiment leave-one-subject-out cross validation
method, where data from all subjects but one are used
to train a classifier, which is then applied on the data
of the left-out subject. The procedure is repeated
separately for each experiment. On the other hand,
with respect to time, we choose to use per-experiment
and per-subject cross-day validation method, where
the data from a specific subject/recording is used to
test a classifier that is trained using data acquired
from a previous recording of the same experiment.
Finally, with respect to the mental processing, per-
subject leave-one-experiment-in cross validation [73] is
used. Hereby, the data from each experiment is used to
train a classifier which is then applied on the data from
each other experiment. This procedure is repeated for
each subject.

In order to assess the significance of the obtained
accuracies (quantified with NMI), p-values were obtai-
ned using the label randomization test procedure [74],
where 1000 permutations were performed in total. P-
values below 0.05 are considered to be statistically sig-
nificant, i.e. rejecting the null hypothesis that the data
and class labels are independent, that is, there is no
difference between the classes [74].

4. Experimental results

4.1. Datasets

Table 1 provides a summary of the total number of
trials and the number of error trials collected for each
subject/experiment/recording. On average, 13.4%
trials were labeled as noisy and were excluded from the
computation of the GAE, GAC and GAD. However, in
the different contexts of classification in this work, all
recorded trials were used.
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Table 1: Number of extracted trials written in
the form (Number of ErrP trials/Total number of
trials). Percentage of ErrP to total trials is shown in
parentheses.

Subject Exp. I Exp. II Exp. III
S1 274/1315 (20.8%) 68/149 (45.6%) 62/125 (49.6%)
S1 (2nd rec.) 174/341 (51.0%) 162/309 (52.4%)
S1 (3rd rec.) 174/338 (51.5%)
S2 228/1099 (20.7%) 71/149 (47.7%) 77/191 (40.3%)
S3 273/1382 (19.8%) 64/139 (46.0%) 111/186 (59.7%)
S3 (2nd rec.) 156/326 (47.9%)
S4 337/1664 (20.3%) 164/245 (66.9%) 85/147 (57.8%)
S4 (2nd rec.) 313/1408 (22.2%) 178/333 (53.5%)
S5 262/1381 (19.0%) 135/215 (62.8%) 152/248 (61.3%)
S5 (2nd rec.) 184/302 (60.9%)
S6 340/1675 (20.3%) 124/191 (64.9%) 119/190 (62.6%)
S7 277/1432 (19.3%) 81/250 (32.4%) 88/278 (31.7%)
S7 (2nd rec.) 66/286 (23.1%)
S8 285/1539 (18.5%) 174/295 (59.0%) 122/289 (42.2%)
S9 327/1532 (21.3%) 194/294 (66.0%) 190/313 (60.7%)
S10 307/1611 (19.1%) 212/331 (64.0%) 241/323 (74.6%)

4.2. Neurophysiological analysis

4.2.1. Experiment I: The GAC, GAE and GAD
for Exp. I are shown in figure 6(a). The GAD
exhibits an early positivity around 220 ms (P2), early
negativity around 280 ms (N2) followed by a positivity
around 340 ms (P3) and a later wider negativity
around 460 ms (N4). Following the adaptive factor
adjustment procedure [71], the difference was found
to be significant around all the observed peaks except
for the N2. Visual inspection of the GAE and GAC
waveforms reveals that the P3 and N4 deflections are
specific to error trials. The SNR value and the peak
latency of these GAD peaks for each subject/recording
are reported in table 2.

Furthermore, since the correct direction of the ball
movement in Exp. I was randomly alternating between
the right and the left direction with each new run,
correct and incorrect trials for these two conditions
obviously result in different HEOG traces. This can be
seen in figure 7, where the average HEOG traces were
plotted separately for the right and left trials alongside
the GAC, GAE and GAD waveforms. Hereby, all
average waveforms are computed by averaging an
equal number of left and right trials for each subject.
The observed discrepancy in the HEOG traces, did
not propagate to the electrode site FCz, as one can
hardly observe any difference in the GAC, GAE, GAD
waveforms computed separately for the two directions.
These results are in agreement with [12] and find
support in [75], where it is argued that horizontal eye
movement have no effect on the central sites.

4.2.2. Experiment II: The GAD waveform at FCz,
plotted in figure 6(b), is characterized with a negative
peak (N) at around 330 ms and a later positive peak
(P) at around 430 ms. Visual inspection of the GAC

and GAE waveforms reveals that these two deflections
are particularly present in error trials. Further, the
time regions around these peaks are identified to be
statistically significant following the adaptive factor
adjustment procedure [71]. Per subject SNR and peak
latency of the two peaks are presented in table 2.

4.2.3. Experiment III: The GAD waveform at FCz,
plotted in figure 6(c), is characterized by a negative
peak (N) at around 260 ms and a later positive
peak (P) at around 380 ms. The peak amplitudes
and latencies of the two peaks are reported for each
subject/recording in table 2. Visual inspection of
the GAE and GAC shows that both waveforms are
characterized with a positivity and a later negativity.
A Wilcoxon paired rank sum test (p = 0.064) revealed
a trend toward a difference in the latency of the
positivity between the GAE and GAC. This difference
is estimated to be around 0.05 s and might be
attributed to the extra time required to notice the flash
on the screen in case of error trials. As such, this delay
is likely to be, as well, the source of the two deflections
in the GAD waveform.

Arguably, the activity at the FCz site in case of
errors after t = 0 cannot be explained by the ocular
artifacts (or saccades) that accompany these errors,
since similar activity, yet with a different peak latency,
is observed in correct trials where no eye movement is
required.

4.3. Within-experiments Classification Results

The 10-fold cross-validation classification accuracies
for each subject/experiment/recording are shown in
table 3. The classification sensitivity and specificity
are estimated to be respectively around 74% and
80% on average, which is comparable with results
reported in similar interaction ErrPs studies with
different classifiers (e.g. sensitivity and specificity
around 82% and 83% with a Gaussian classifier [12],
average accuracy around 80% using a support vector
machine (SVM) classifier [30] and around 77% using
neural networks [51]). The NMI metric is estimated
to be around 25%, 30% and 39% for Exp. I, II and
III, respectively. The permutation test revealed that
all obtained accuracies are significant (meaning that
these accuracies are obtained from classifiers that have
found a significant class structure for the respective
individual/experiment/recording), except for subject
S5 in Exp. II, for whom both the negativity and
the positivity were found to have low SNR levels
as listed in table 2. Overall, the obtained results
reiterate the significant difference between the correct
and error trials within each experiment, allowing
to train significant classifiers that are specific for
individuals/experiments/recordings.
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Figure 6: The GAC, GAE and GAD waveforms were computed from the average of all subjects and recordings
for all experiments. The shaded areas represent significant time regions in GAD as identified with the adaptive
factor adjustment procedure described in [71]. Scalp topographies of voltage amplitudes (averaged over the
significant time regions) are plotted in the upper panel.

Table 2: Per-subject SNR (r2) and latency values for the different peaks of the GAD waveform in the three
experiments. Shaded rows highlight the second and third recordings of subjects who perfomed one experiment
(or more) mutliple times. The coefficient of variation (CV) of each column is tabulated in the last row.

Experiment I Experiment II Experiment III
P3 N4 N P N P

Subject SNR (r2) Latency SNR (r2) Latency SNR (r2) Latency SNR (r2) Latency SNR (r2) Latency SNR (r2) Latency
S1 0.259 0.36 0.157 0.46 0.289 0.31 0.230 0.39 0.251 0.27 0.208 0.35
S1 (2nd rec.) 0.057 0.31 0.131 0.38 0.234 0.25 0.058 0.37
S1 (3rd rec.) 0.073 0.32 0.096 0.38
S2 0.218 0.34 0.182 0.44 0.039 0.33 0.084 0.43 0.058 0.25 0.241 0.37
S3 0.037 0.34 0.029 0.42 0.159 0.30 0.252 0.39 0.420 0.25 0.263 0.39
S3 (2nd rec.) 0.277 0.25 0.167 0.38
S4 0.003 0.39 0.007 0.52 0.190 0.35 0.206 0.46 0.231 0.25 0.163 0.40
S4 (2nd rec.) 0.007 0.33 0.009 0.57 0.154 0.25 0.087 0.40
S5 0.091 0.37 0.049 0.47 0.010 0.37 0.013 0.50 0.039 0.24 0.002 0.37
S5 (2nd rec.) 0.048 0.25 0.029 0.35
S6 0.013 0.32 0.135 0.44 0.021 0.34 0.173 0.54 0.009 0.26 0.081 0.42
S7 0.029 0.36 0.057 0.45 0.015 0.32 0.101 0.40 0.089 0.30 0.109 0.38
S7 (2nd rec.) 0.051 0.32 0.204 0.38
S8 0.074 0.34 0.064 0.43 0.099 0.35 0.159 0.45 0.131 0.27 0.027 0.34
S9 0.086 0.35 0.087 0.49 0.050 0.34 0.112 0.47 0.153 0.27 0.007 0.33
S10 0.308 0.34 0.256 0.45 0.016 0.29 0.009 0.39 0.050 0.27 0.103 0.43
mean± std 0.102 ± 0.11 0.35±0.02 0.094±0.08 0.47±0.04 0.082±0.08 0.33±0.02 0.136±0.08 0.43±0.05 0.153±0.12 0.26±0.01 0.110±0.09 0.38±0.03

CV 1.06 0.06 0.85 0.10 1.01 0.07 0.56 0.12 0.76 0.06 0.78 0.08

4.4. Invariance and variability in ErrPs with respect
to subjects

Figure 8 shows per-subject average difference waveform
separately for each experiment. The variability
across subjects is also shown with the shaded area,
representing the standard error of the mean. From
these plots and the results in table 2, one can observe
inter-subject variability with respect to the amplitudes
and SNR of the different deflections. The timing of
the different deflections, however, seems to be more
consistent across subjects as indicated by the values of
the coefficient of variation (i.e., the standard deviation

divided by the mean) reported in the last row of table 2.
As in [51], it can be argued that the high variance
of classification accuracy across subjects, reported in
table 3, can be attributed to the fact that these
subjects have different concentration levels on the
performed tasks.

Furthermore, table 4 lists, separately for each
experiment, the leave-one-subject-out cross validation
accuracies for the classifier transfer. The permutation
test indicated that the obtained accuracies are
significant (meaning that these accuracies are obtained
from classifiers that have found a significant class
structure for the respective ErrP/noErrP dataset) for
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Figure 7: The GAE, GAC and GAD waveforms computed from equivalent number of left and right trials per
subject in Exp. I at the electrode site FCz and for HEOG.
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Figure 8: The average difference (error-minus-correct) waveform plotted for each subject in Exp. (a) I, (b) II
and (c) III. Shaded area represents the standard error estimate across the different subjects.

all subjects Exp. I and 70% of all subjects in Exp.
II and III. However, it can be easily seen that the
obtained NMI values are inferior to the cross-validation
accuracies obtained for each subject/experiment listed
in table 3. The differences were observed to be 0.09,
0.2 and 0.22, respectively for Exp. I, II and III.
These differences were revealed to be significant with
Wilcoxon paired rank sum tests, applied separately
for each experiment on the data tabulated in table 3
and table 4, and corrected for multiple tests using
the Benjamini-Hochberg false discovery rate control
procedure [76]. Corrected p-values were (p = 0.002)
for all experiments.

Altogether, these results suggest that despite
inter-subject variability that negatively affects classi-
fier transfer performance, invariant features across sub-
jects can be obtained.

4.5. Invariance and variability in ErrPs over time

Figure 9 shows the GAD waveforms computed for the
participants S4, S1 and S3 who completed multiple
recordings for experiments I, II and III, respectively.
Visual inspection of these plots shows that the shapes
of the ErrPs are empirically invariant over time for the

same experiment/interface/subject. This observation
which is valid for all our three interfaces agrees
with [12], where the same is shown using an interface
very similar to the one in Exp. I. Combined with the
results in table 2, it can be observed that the SNR,
amplitude and latency of the different peaks are quite
stable over time.

Furthermore, table 5 lists the NMI values obtained
for the shrinkage-LDA trained with data of one
recording, and applied on data from a later recording
of the same subject/experiment. The table only
shows the results for the subjects who have multiple
recordings for the same experiment. The permutation
test indicated that the classifier transfer accuracy is
significant (meaning that these accuracies are obtained
from classifiers that have found a significant class
structure for the respective ErrP/noErrP dataset) for
all subjects. However, it can be easily seen that
the NMI experiences a reduction of 0.13 on average
compared to the values from table 3, which is revealed
to be significant with a Wilcoxon paired rank sum
test (p = 0.004). Nonetheless, the classification
results altogether reemphasize our belief that ErrPs
are empirically invariant to a larger extent over time
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Figure 9: Examples of the GAD waveforms computed for the different experiments for some subjects who
performed one experiment or more on multiple occasions.

than over subjects for the same experiment/interface,
which is also supported by the similar GAD waveforms
obtained for the different days.

4.6. Invariance/variability with respect to human
mental processing of interface actions

In section 4.2, we have compared the GAE and GAC
waveforms to reason about the observed components in
the GAD waveform for each experiment. In the follo-
wing, we compare the GAE and GAC waveforms across
experiments to reason about the variability/invariance
in the computed GAD waveforms with respect to the
mental processing required to assess the interface acti-
ons. To this end, figure 10 rearranges the GAE, GAC
and GAD waveforms from figure 6 and plots them over
experiments.

4.6.1. Experiment II vs. III
As can be seen from figure 10(c) and table 2, both the
GAD waveforms of Exp. II and III are characterized
by a negativity and a later positivity. Further, from
figure 6 and other results in section 4.2 ,we have
seen that not only the timing of the two deflections
varied across experiments, but also their relation to
the time course of the GAC and GAE waveforms. In
Exp. II, the two ErrP deflections in the GAD were
primarily present in error trials, whereas in Exp. III,
the deflections might have appeared as a result of the
time delay in processing the error trials relative to the
correct ones. The different mental processes required
to evaluate the interface actions, as has been discussed
in 3.3.4, might provide a plausible explanation to this
variability. It can be seen from figures 10 and 11
that the difference in the GAE waveforms across
experiments is larger than that in the GAC waveforms.
This additionally might hint at a role of the mental
processing in the observed variability.

4.6.2. Experiment I vs. II
The discrepancy in the GAD waveform between Exp. I
and Exp. II has been already observed in the literature,
e.g. Spüler and Niethammer note that the first positive
peak and the N4 is not visible in interaction ErrPs
for all BCI tasks [42]. In the current work, and by
analyzing figure 6, we have additionally seen that the
P3 and N4 deflections in the GAD waveform of Exp. I
and the N and P deflections of Exp. II stem from their
particular presence in error trials.

4.6.3. Per-subject across-experiments classifier trans-
fer
The classification accuracies for the classifier transfer
across the different experiments are listed in table 6.
These results show that the classifier transfer between
Exp. I and II, and between Exp. I and III provide in-
significant and low accuracies for most subjects. The
accuracies of the classifier transfer between Exp. II
and III show significant results for almost half of the
subjects.

5. Discussion

5.1. Significance of the results

The present study addressed between and within-
subject sources of invariance/variability in interaction
ErrP and showed a strong evidence that some
invariant features exist across the different subjects
and over time, replicating previous conclusions in
this respect. On the other hand, convergent
evidence has been obtained suggesting that different
mental processes required to assess interface actions
give rise to distinguishable ErrP waveforms. The
same has also been confirmed with a low across-
experiments generalizability of the LDA classifier,
especially between Exp. I on one hand, and Exp.
II and III on the other hand. The accuracies of
the classifier transfer between Exp. II and III show
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Figure 10: The GAE, GAC and GAD waveforms for the three experiments.
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Figure 11: The difference in GAE, GAC and GAD
waveforms across Exp. II and III.

significant results for almost half of the subjects, where
the results also show that the rate of correct detection
of correct trials (TNR) is higher than that of incorrect
trials (TPR). The later observation suggests that the
similarity of the GAC waveforms in both experiments
(i.e., II and III) may have contributed to these results.

Furthermore, the relative invariance of ErrPs
over time, and the identical pre-processing pipeline
used for all experiments rule out their possible
involvement in producing the observed variability
across the different experiments. Conversely, it
can be argued that should there be a considerable
difference in the shape of the grand average error
and correct trials across experiments/studies with the
same tasks, different mental processes are expected
to underly this difference. It cannot be said with
certainty, however, that the observed variability in
ErrPs can be fully accounted for by these factors.
Variables like the structure/modality of the feedback,
the pre-processing pipeline, the rarity/frequency of
error occurrences [12], the severity of the error (i.e., the
degree of mismatch between the actual outcome and
user expectation) [77] and possible ocular and muscular
artifacts may contribute as well to such variations, and

such contribution should be reduced as much as the
experimental paradigms might allow.

Our results emphasize that different ErrP studies
and the results obtained therefrom should be carefully
compared, and a similarity in the GAD waveform
should be always confirmed with respect to the
separate averages of error and correct trials. For
instance, the apparent similar shapes of the GAD
waveforms in Exp. II and III might hint at a mere
difference in latency between the peaks of the two
signals. The larger signal difference in GAE between
the experiments, as can be seen in figure 11, may
rule out such explanation and instead, suggests a
role of the different mental processing of the feedback
stimuli. Furthermore, visual inspection of the average
waveforms in Exp. II and III reveals the presence of
the N4 component in both GAC and GAE waveforms,
which was clearly absent in the GAD waveforms.
Therefore, it would have been certainly misleading
to just show the similarity of GAD waveforms in
experiments II and III, or to claim that the late N4
component is specific to Exp. I.

In this work, we have investigated the invari-
ance/variance of ErrPs mainly at the FCz electrode.
Furthermore, despite the fact that ErrPs can be eva-
luated in both the spectral and temporal domains, the
focus of this study was laid upon the temporal domain
and therefore no claim whatsoever about the spectral
variability is made. Some evidence exists in the litera-
ture, however, suggesting that the spectral responses
to errors may vary as well with respect to different
types of errors, e.g. between execution and outcome
errors [42].

5.2. Comparison with relevant studies

It is generally challenging to compare the results
of different studies as there are several sources of
variability involved. In order to illustrate this, in the
following we try to highlight the similarities/differences
between the GAD waveforms from our experiments to
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Table 3: 10-fold cross-validation classification
accuracy. Accuracy is reported in terms of TPR, TNR
and NMI. All results were significant except for subject
S5 in Exp. II.

Subject Metric Exp. I Exp. II Exp. III
S1 TPR 0.75 ± 0.07 0.88 ± 0.09 0.79 ± 0.13

TNR 0.95 ± 0.02 0.80 ± 0.11 0.78 ± 0.19
NMI 0.43 ± 0.09 0.43 ± 0.19 0.32 ± 0.20

S2 TPR 0.79 ± 0.06 0.79 ± 0.15 0.83 ± 0.18
TNR 0.95 ± 0.02 0.86 ± 0.08 0.88 ± 0.12
NMI 0.48 ± 0.10 0.39 ± 0.27 0.49 ± 0.23

S3 TPR 0.60 ± 0.12 0.89 ± 0.11 0.90 ± 0.05
TNR 0.73 ± 0.04 0.85 ± 0.14 0.89 ± 0.08
NMI 0.08 ± 0.06 0.52 ± 0.24 0.56 ± 0.18

S4 TPR 0.57 ± 0.08 0.91 ± 0.06 0.89 ± 0.10
TNR 0.68 ± 0.05 0.88 ± 0.12 0.86 ± 0.14
NMI 0.05 ± 0.03 0.57 ± 0.22 0.55 ± 0.31

S5 TPR 0.65 ± 0.09 0.57 ± 0.17 0.61 ± 0.15
TNR 0.81 ± 0.03 0.47 ± 0.18 0.59 ± 0.18
NMI 0.15 ± 0.05 0.05 ± 0.06 0.06 ± 0.09

S6 TPR 0.71 ± 0.09 0.82 ± 0.06 0.67 ± 0.08
TNR 0.90 ± 0.02 0.75 ± 0.20 0.66 ± 0.18
NMI 0.31 ± 0.09 0.30 ± 0.20 0.11 ± 0.10

S7 TPR 0.71 ± 0.08 0.68 ± 0.17 0.85 ± 0.14
TNR 0.80 ± 0.03 0.79 ± 0.07 0.95 ± 0.05
NMI 0.19 ± 0.06 0.18 ± 0.09 0.61 ± 0.19

S8 TPR 0.79 ± 0.06 0.75 ± 0.10 0.83 ± 0.13
TNR 0.90 ± 0.01 0.72 ± 0.16 0.87 ± 0.11
NMI 0.38 ± 0.06 0.19 ± 0.10 0.47 ± 0.22

S9 TPR 0.66 ± 0.09 0.73 ± 0.09 0.90 ± 0.04
TNR 0.81 ± 0.03 0.64 ± 0.08 0.87 ± 0.12
NMI 0.17 ± 0.06 0.11 ± 0.08 0.52 ± 0.12

S10 TPR 0.79 ± 0.07 0.75 ± 0.10 0.79 ± 0.08
TNR 0.95 ± 0.02 0.60 ± 0.17 0.68 ± 0.21
NMI 0.48 ± 0.09 0.11 ± 0.10 0.20 ± 0.14

S1 (2nd rec.) TPR 0.69 ± 0.10 0.85 ± 0.06
TNR 0.70 ± 0.13 0.81 ± 0.07
NMI 0.14 ± 0.09 0.36 ± 0.14

S1 (3rd rec.) TPR 0.86 ± 0.10
TNR 0.78 ± 0.15
NMI 0.37 ± 0.17

S3 (2nd rec.) TPR 0.85 ± 0.08
TNR 0.88 ± 0.06
NMI 0.46 ± 0.14

S4 (2nd rec.) TPR 0.58 ± 0.11 0.90 ± 0.06
TNR 0.68 ± 0.05 0.89 ± 0.04
NMI 0.05 ± 0.04 0.53 ± 0.13

S5 (2nd rec.) TPR 0.70 ± 0.11
TNR 0.70 ± 0.23
NMI 0.16 ± 0.11

S7 (2nd rec.) TPR 0.73 ± 0.13
TNR 0.93 ± 0.06
NMI 0.42 ± 0.19

mean TPR 0.69± 0.09 0.77± 0.10 0.81± 0.09
TNR 0.83± 0.10 0.75± 0.13 0.81± 0.11
NMI 0.25± 0.17 0.29± 0.17 0.39± 0.18

Table 4: Leave-one-subject-out cross validation
accuracies for each subject. Accuracies were significant
except for the cells highlighted in orange.

Experiment I Experiment II Experiment III
Sub. ErrP noErrP NMI ErrP noErrP NMI ErrP noErrP NMI
S1 0.79 0.84 0.28 0.84 0.51 0.09 0.85 0.37 0.04
S2 0.82 0.84 0.32 0.87 0.53 0.13 0.77 0.75 0.19
S3 0.48 0.80 0.06 0.61 0.91 0.22 0.80 0.89 0.38
S4 0.44 0.75 0.03 0.63 0.88 0.20 0.82 0.68 0.19
S5 0.38 0.87 0.06 0.50 0.53 0.00 0.57 0.53 0.00
S6 0.38 0.95 0.14 0.81 0.27 0.00 0.93 0.15 0.01
S7 0.78 0.51 0.06 0.65 0.66 0.07 0.74 0.90 0.33
S8 0.80 0.70 0.16 0.65 0.73 0.10 0.54 0.86 0.13
S9 0.51 0.90 0.15 0.77 0.49 0.05 0.93 0.67 0.32
S10 0.83 0.85 0.33 0.54 0.58 0.01 0.80 0.49 0.07

mean 0.62 0.80 0.16 0.69 0.61 0.09 0.78 0.63 0.17

Table 5: Classification accuracies computed for the
classifier transfer over time (NMIt) compared to the
10-fold cross validation NMI values from table 3. All
results were identified as significant by the permutation
test. The time gap (in days) between the different
recordings is listed under ∆d.

Exp. Sub. Train w/ Test w/ ∆d NMI NMIt
I S4 1st rec. 2nd rec. 3 0.05 ± 0.04 0.04

II S1 1st rec. 2nd rec. 33 0.14 ± 0.09 0.13
S1 1st rec. 3rd rec. 38 0.37 ± 0.17 0.18
S1 2nd rec. 3rd rec. 5 0.37 ± 0.17 0.19
S7 1st rec. 2nd rec. 6 0.42 ± 0.19 0.30

III S1 1st rec. 2nd rec. 17 0.36 ± 0.14 0.15
S3 1st rec. 2nd rec. 30 0.46 ± 0.14 0.43
S4 1st rec. 2nd rec. 47 0.53 ± 0.13 0.25
S5 1st rec. 2nd rec. 14 0.16 ± 0.11 0.06

mean 0.32 0.19

the results from relevant studies in the literature. In
particular, the interfaces in Exp. I and Exp. II have
been previously used in the literature, and similar GAD
waveform have been reported. Fig 12(a) compares
the GAD obtained for Exp. I (solid line) and that
in [12] (sparsely dashed line). We observe that the two
waveforms exhibit high similarity with respect to their
general shape, yet with a considerable variability with
respect to the observed peak amplitudes and latencies.
The shift in P3 latency was found to be significant;
t(9) = 5.38, p < 0.001. Additionally, the waveform of
the execution error in [42] is plotted on the same figure
(sparsely dotted line), where similar observation about
the peak amplitudes and latencies can be made as
before. Since there is a great similarity in the nature of
the erroneous actions across these studies (the interface
deliberately moves a virtual object in directions that
mismatch the user input), it may be argued that
this variability is due to between-subject variations.
Further, the different pre-processing pipelines used to
produce these results might have made a contribution.
To support the last argument, we have examined the
effect of two simple modifications to our pre-processing
pipeline. The first modification (M1) consists of
removing the common average re-reference block from
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Table 6: Per-subject leave-one-experiment-in cross validation accuracy. All NMI values were not significant
except for the shaded cells.

Exp. I Exp. II Exp. III
Exp. II Exp. III Exp. I Exp. III Exp. I Exp. II

Sub. ErrP noErrP NMI ErrP noErrP NMI ErrP noErrP NMI ErrP noErrP NMI ErrP noErrP NMI ErrP noErrP NMI
S1 0.18 0.96 0.03 0.64 0.79 0.14 0.62 0.31 0.00 0.42 0.69 0.01 0.61 0.69 0.06 0.23 0.74 0.00
S2 0.03 0.91 0.00 0.45 0.68 0.01 0.11 0.77 0.02 0.56 0.89 0.18 0.36 0.77 0.01 0.66 0.79 0.15
S3 0.61 0.35 0.00 0.89 0.09 0.00 0.38 0.48 0.00 0.37 0.83 0.03 0.63 0.43 0.00 0.52 0.87 0.12
S4 0.56 0.48 0.00 0.89 0.36 0.06 0.72 0.28 0.00 0.49 0.78 0.06 0.70 0.42 0.00 0.51 0.70 0.03
S5 0.15 0.82 0.00 0.40 0.60 0.00 0.48 0.36 0.00 0.46 0.41 0.00 0.53 0.45 0.00 0.30 0.65 0.00
S6 0.10 0.91 0.00 0.61 0.45 0.00 0.81 0.28 0.00 0.75 0.48 0.04 0.54 0.35 0.00 0.71 0.55 0.05
S7 0.77 0.50 0.05 0.89 0.33 0.04 0.43 0.71 0.01 0.74 0.83 0.24 0.62 0.54 0.02 0.57 0.81 0.11
S8 0.15 0.80 0.00 0.57 0.62 0.02 0.48 0.29 0.00 0.48 0.26 0.00 0.64 0.54 0.02 0.16 0.79 0.00
S9 0.39 0.59 0.00 0.56 0.60 0.02 0.72 0.24 0.00 0.69 0.45 0.01 0.86 0.20 0.00 0.36 0.65 0.00
S10 0.10 0.90 0.00 0.37 0.71 0.00 0.58 0.29 0.00 0.68 0.59 0.04 0.57 0.31 0.00 0.60 0.57 0.02
mean 0.30 0.72 0.01 0.63 0.52 0.03 0.53 0.40 0.00 0.56 0.62 0.06 0.61 0.47 0.01 0.46 0.71 0.05

the original pipeline shown in figure 5(b), whereas
in the second (M2), the EEG epochs are extracted
directly from the raw data and linearly detrended by
removing the best straight-line that fits the data of
each electrode. The GAD waveforms resulting from
using M1 (densely dotted line) and M2 (densely dashed
line) with the data of Exp. I are additionally plotted
on figure 12(a). The new GAD plots obviously show
that the way the data is pre-processed affects the
latency and amplitude of the observed peaks, where
spatial mean subtraction reduces the amplitude of the
observed deflections (as can be seen by comparing
the results of M1 and the original pipeline) and the
temporal filtering additionally introduces time shifts
in the data (as can be seen by comparing the results of
M2 and the original pipeline).

Similarly, the GAD waveform for Exp. II is
plotted alongside those from [30, 44] in figure 12(b).
Again, the between subject variations and the different
processing pipeline might have contributed to the
observed variability. Herein, however, one cannot
rule out the contribution of the different mental
processing to these discrepancies, as the maximum
number and the language spelling tasks could have
required different mental processing of the interface
actions.

5.3. The effect of the error rarity/frequency

It has been already established that the error rate has
an impact on the observed amplitude (but not the time
course) of the ErrP signals [12]. More specifically,
it has been shown that a rare error (with frequency
20%) leads to larger amplitudes when compared to
more frequent errors (with frequency 50%) [12]. The
amplitude difference may be attributed according
to [12] to possible contributions of the Oddball N2
and P3 in case of error rates of 20%. Therefore, the
discrepancy in our experiments regarding error rates,
might have also contributed to why subject-specific
classifiers could not be transferred between Exp. I

(where error rates were targeted to be around 20%)
on one hand and Exp. II and III (where error rates
were targeted to be around 50%) on the other hand.
However, should it be true, that the mismatch in
error rates gave rise to the large variability between
experiments, then for classifier transferability to work
eventually across experimental paradigms, one needs
to control for the error rates among these experiments.

5.4. ErrPs Invariance at electrodes other than FCz

This work has mainly investigated the invari-
ance/variability of ErrPs measured at the FCz elec-
trode location. This channel has been chosen primarily
as the areas to its underneath are repeatedly shown
to be involved in responding to observed/committed
errors. As such, the invariance/variability repor-
ted here, is practically a manifestation of the invari-
ance/variability of how these areas respond to errors.
Conversely, and depending on the exact model of the
head volume conduction, EEG measured at any elec-
trode placed at the scalp may also capture the activity
of these areas, and if so, this activity should be sub-
ject to the same invariance/variability factors as the
activity recorded at FCz. This leads us to argue that
the obtained results regarding the invariance of ErrPs
at FCz, can be generalized (but with caution) to other
electrode locations that capture the error monitoring
and processing activities in the brain. Electrodes, that
are placed at locations that do not capture the error-
related activity, should manifest no difference between
error and correct trials, and should manifest great inva-
riance in this regard. However, these arguments need
to be verified with future work.

5.5. The effect of the classifier choice

Throughout this work, we have assumed the existence
of invariant temporal ErrP features with respect to a
specific factor on the basis of classifier generalizability
across its different levels. The LDA classifier was
chosen for classification since its results can be
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Figure 12: Comparison of the obtained GAD waveforms with reported averages in the literature. (a) The GAD
waveform at electrode FCz obtained with Exp. I is compared to the GAD reported in [12, 42]. There is a
considerable shift between the two signals, but the shape remains very similar. The GAD is also shown when
computed using Pipeline 1 and 2. (b) The GAD waveform at Cz obtained from the data of Exp. II, compared
to the GAD in [30,44].

interpreted by referring to the first and second
moments of the (temporal) ErrP/noErrP distributions.
Obviously, other classifiers, e.g. SVM or neural
networks, may result in different results, but such
results may not be easily interpreted. Generally
speaking, the LDA classifier finds the optimal 1-
dimensional subspace, on which the projected values
of the sample feature vectors have maximal correlation
with their labels. Optimality is guaranteed when the
sample data of the two classes are drawn from normal
distributions with different means (µ1 6= µ2) and
a common covariance matrix Σ. The LDA optimal
subspace is obtained directly from the means and the
covariance matrix as was described in subsection 3.4.
Since the GAD waveforms (i.e. µ1−µ2) of the different
experiments were found to be stable over time, it is
reasonable to think that the reduced performance of
the transferred LDA classifier over time stems from
the fluctuations in the covariance matrix.

Furthermore, the differences observed in GAD,
GAE and GAC waveforms across experiments, suggest
that one needs to at least recalibrate trained classifiers
for the means of the new interfaces, which requires
to acquire new training examples. The effectiveness
of LDA recalibration with respect to the new mean
values has been already confirmed in [41]. The
applicability of this approach is additionally supported
by the results in [78] where it is shown that error-
related brain activity can be assessed on the basis
of 6-8 trials only. Further, with prolonged usage of
BCIs as in [79], training examples of ErrP/noErrP
can be obtained alternatively in retrospect from the
rich previous history of interaction by exploiting the
structure of the interface to label post-feedback EEG
epochs as erroneous/correct [32,80].

5.6. Impact on P300-ErrP BCIs

The current work shows the ability of supervised LDA
classification to decode interaction ErrPs for both the
inplace and central feedback strategies, yet the former
has shown better cross validation results and better
across-subject classifier transferability. Based on the
major results of this work, we hypothesize that the
inplace feedback has another favorable aspect. That is,
the ErrP in inplace feedback strategy is independent
of the task, for which P300-based interaction is
used, whereas in case of central feedback, different
mental processes may be required to assess interface
actions for different tasks. For instance, in spelling
applications, feedback stimuli are assessed based on
the correctness of the spelled characters, whereas in
maximum number task, judging the correctness of
the feedback involves judging whether the presented
number consists of 3 digits or not. The validation of
this hypothesis is left to future work. Furthermore,
ErrP classification has been treated throughout this
work as a supervised classification problem. That is
mainly due to the nature of P300-based interaction
tasks presented. In sequential tasks (as the ball
game of Exp. I in this work) with feedback signals,
unsupervised ErrP classification has been shown to
achieve good results [81].

5.7. Interrelations with other types of ErrP

In this work, our main focus was laid upon the
interaction ErrPs and their variability/invariance. Yet,
the results obtained hereby find support in studies
of other types of ErrPs as has been already reported
in section 2 regarding relevant results for observation
ErrPs.

Furthermore, in speeded choice RT tasks like
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flanker task, observation ErrPs are characterized with
ERN that peak at around 250 ms. This negativity
is similar to that in response ErrPs, yet with longer
latency and reduced amplitude, suggesting that similar
neural mechanisms are involved in assessing performed
and observed actions [5]. Along this vein, the
experiments in [82] investigated observation ErrPs
in a VR environment where users observed avatars
performing reach-to-grasp actions from first-person
perspective (1PP) and third-person perspective (3PP).
It has been found that observation of erroneous actions
in 1PP enhances the ERN, Pe and spectral theta and
alpha bands powers compared to 3PP, suggesting that
the action monitoring system is maximally activated
for ones own errors and when others errors are coded
as if they were as such. Similarily, feedback ErrPs were
reported to have a negativity peaking in the time range
[200-300] ms following externally generated errors
(i.e. malfunctions) in speeded choice RT tasks [23].
According to authors, the different latencies of ERN
in the different types of ErrPs indicate a possibility of
being dependent on the source of information about
goal achievement rather than about the performance
itself [23], where self-generated errors are recognized
more rapidly compared to externally generated errors,
as for the latter case, feedback stimuli need to go
through the sensory system first. This is also consistent
with the results of [8], where it was shown that the
latency and peak amplitude of feedback negativity are
sensitive with respect to the used feedback modality
and to stimulus discriminability. Other factors like
the response-set size [83], the perceived accuracy of
actions [25], and whether accurate performance or
response speed is emphasized [69], have a strong
effect on the ERN and CRN observed with subjects
performing different versions of flanker task.

Together, these results converge to suggest that
a similarity in the mental processing of commit-
ted/observed errors give rise to variability that af-
fects the amplitude and latency of the different
peaks/components in ErrPs. On the contrary, diffe-
rences in the general shape of ErrPs across experi-
ments/studies suggests the recruiting of different men-
tal processes therein.

5.8. The effect of user tiredness

Tiredness is a major source of nonstationarity in the
brain, typically giving rise to strong alpha rhythms in
EEG signals [35]. We conjecture that tiredness has
affected all our experimental conditions and subjects
equally, and no particular observation made here can
be directly connected to user tiredness.

6. Conclusion

Using three different noisy interfaces, this paper has
examined the invariance vs. variability of interaction
ErrPs with respect to: (1) the mental processes
required to assess interface actions (2) time (3)
subjects. By fixing the pre-processing pipeline for all
experiments, we have shown that the interaction ErrPs
for each experiment enjoyed invariance to some extent
across subjects and over time. This invariance in turn
resulted in a relative robustness of the shrinkage-LDA
classifier across subjects and over time. On the other
hand, we have shown that the mental processes which
are required to assess interface actions highly affect the
observed interaction ErrPs. This has been supported
by the differences in the observed GAC, GAE and
GAD waveforms across interfaces/experiments. The
observed variability with respect to the respective
mental processes has also been shown to make it
difficult for a classifier learned from the data of one
experiment/interface to straightforwardly transfer to
other experiments/interfaces. In particular, despite
the similarity of the GAD waveforms in experiments
II and III, where subjects performed exactly the same
task but with different feedback presentation methods,
shrinkage-LDA classifier which was learned from data
of one experiment showed low accuracies for most
subjects when tested on data from the other interface.
Again, this proves the sensitivity of the ErrPs to the
nature of the mental processing of correct and incorrect
interface actions, which takes place immediately after
the feedback onset.

In this work, we didn’t try to compare the many
existing advanced spatial and spatio-temporal filtering
methods that enhance the SNR or the ErrPs. But
using simple alteration of the pre-processing pipeline,
we have shown that great variability can be introduced
with respect to the timing and amplitude of the
different components of interaction ErrPs.

In summary, the variability in the different
interaction ErrP studies (including ours) was found
largely attributable to the different mental processing
required to assess interface actions. Conversely,
given two interfaces which require the exact same
mental processing after feedback onset in correct
and incorrect trials, our results suggest that any
discrepancy with respect to the amplitude and latency
of the different ErrP components are most likely caused
by inter-subject variability, the non-stationarity of
the EEG data or differences in the pre-processing
pipeline. These discrepancies propagate as well to the
classification step and affects the obtained accuracies.
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