80 research outputs found

    A modulation QCM applied to copper electrodeposition and stripping

    Get PDF
    A fast electrochemical quartz crystal microbalance with dissipation monitoring (EQCM−D) was applied to copper electrodeposition and subsequent stripping. Accumulation brings the frequency noise down to the mHz range, corresponding to 0.1 % of a monolayer. With this precision, the apparent mass transfer rate as determined from the time-derivative of the frequency shift can be directly compared to the current. Small but systematic deviations between the two can be attributed to nanoscale roughness. In the voltage range of underpotential deposition (UPD), the apparent mass transfer rate shows peaks and shoulders. The plating additive benzotriazole (BTA) leaves the magnitude of electrogravimetric signals unchanged, but shifts the UPD onset potential. The additive thiourea (TU) promotes UPD and strongly increases the bandwidth

    Electrodeposition of Indium from an ionic liquid investigated by in situ electrochemical XPS

    Get PDF
    The electrochemical behavior and electrodeposition of indium in an electrolyte composed of 0.1 mol/L InCl3 in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide ([Py1,4]TFSI) on a gold electrode were investigated. The cyclic voltammogram revealed several reduction and oxidation peaks, indicating a complex electrochemical behavior. In the cathodic regime, with the formation of an In-Au alloy, the reduction of In(III) to In(I) and of In(I) to In(0) takes place. In situ electrochemical X-ray photoelectron spectroscopy (XPS) was employed to investigate the reduction process by monitoring the oxidation states of the components during the cathodic polarization of 0.1 mol/L InCl3/[Py1,4]TFSI on a gold working electrode under ultra-high vacuum (UHV) conditions. The core electron binding energies of the IL components (C 1s, O 1s, F 1s, N 1s, and S 2p) shift almost linearly to more negative values as a function of the applied cell voltage. At −2.0 V versus Pt-quasi reference, In(I) was identified as the intermediate species during the reduction process. In the anodic regime, a strong increase in the pressure in the XPS chamber was recorded at a cell voltage of more than −0.5 V versus Pt quasi reference, which indicated, in addition to the oxidation reactions of In species, that the oxidation of Cl− occurs. Ex situ XPS and XRD results revealed the formation of metallic In and of an In-Au alloy

    Study of PLA pre-treatment, enzymatic and model-compost degradation, and valorization of degradation products to bacterial nanocellulose

    Get PDF
    It is well acknowledged that microplastics are a major environmental problem and that the use of plastics, both petro- and bio- based, should be reduced. Nevertheless, it is also a necessity to reduce the amount of the already spread plastics. These cannot be easily degraded in the nature and accumulate in the food supply chain with major danger for animals and human life. It has been shown in the literature that advanced oxidation processes (AOPs) modify the surface of polylactic acid (PLA) materials in a way that bacteria more efficiently dock on their surface and eventually degrade them. In the present work we investigated the influence of different AOPs (ultrasounds, ultraviolet irradiation, and their combination) on the biodegradability of PLA films treated for different times between 1 and 6 h. The pre-treated samples have been degraded using a home model compost as well as a cocktail of commercial enzymes at mesophilic temperatures (37 °C and 42 °C, respectively). Degradation degree has been measured and degradation products have been identified. Excellent degradation of PLA films has been achieved with enzyme cocktail containing commercial alkaline proteases and lipases of up to 90% weight loss. For the first time, we also report valorization of PLA into bacterial nanocellulose after enzymatic hydrolysis of the samples
    • 

    corecore