53 research outputs found

    Entropy and Correlations in Lattice Gas Automata without Detailed Balance

    Full text link
    We consider lattice gas automata where the lack of semi-detailed balance results from node occupation redistribution ruled by distant configurations; such models with nonlocal interactions are interesting because they exhibit non-ideal gas properties and can undergo phase transitions. For this class of automata, mean-field theory provides a correct evaluation of properties such as compressibility and viscosity (away from the phase transition), despite the fact that no H-theorem strictly holds. We introduce the notion of locality - necessary to define quantities accessible to measurements - by treating the coupling between nonlocal bits as a perturbation. Then if we define operationally ``local'' states of the automaton - whether the system is in a homogeneous or in an inhomogeneous state - we can compute an estimator of the entropy and measure the local channel occupation correlations. These considerations are applied to a simple model with nonlocal interactions.Comment: 13 pages, LaTeX, 5 PostScript figures, uses psfig. Submitted to Int. J. Mod. Phys.

    Large scale composting model

    Get PDF
    One way to treat the organic wastes accordingly to the environmental policies is to develop biological treatment like composting. Nevertheless, this development largely relies on the quality of the final product and as a consequence on the quality of the biological activity during the treatment. Favourable conditions (oxygen concentration, temperature and moisture content) in the waste bed largely contribute to the establishment of a good aerobic biological activity and guarantee the organic matter stabilisation with limitation and control of odorous and greenhouse effect gaseous emissions. Several approaches (0D biochemical reducing, see Pommier et al. 2007, effective 1D modelling coupling transport and biochemical) have been made to understand the behaviour of such systems. In this paper we will present a 2D numerical model using Darcy scale equations for heat and mass transport coupled with a biochemical reactive scheme. Then, we will solve that system (using experimental measurements on reactivity and transport coefficients) with a commercial code (COMSOL TM). The model described here is based on the biological model presented in Trémier et al 2005 coupled with an upscale transport model detailed in Hénon 2008 which takes into account the major components of the gas phase: N₂, O₂, CO₂ and also H₂O. This is a crucial point because of: - The reaction rate, depending on the moisture content (humidity comes from the initial condition of the sludge but also from the reactive scheme because reactions produce water), - heat content, very sensitive to the evaporation rate in the sludge. It has been shown in Pujol et al 2011 that the impact of drying could be important on the reactivity but also that the pseudo component air could not be sufficient to represent the drying in the sludge. The process studied was a closed reactor composting process (180 m³ rectangular box) with positive forced aeration. The air was blown from the bottom of the reactor, via two ventilation pipes. In the upper part of the reactor, air was sucked and led to a biofilter treatment system. The treated waste was a mixture of sewage sludge and bulking agent that was composted during four weeks without turning. Several informations were recorded during the treatment like temperature evolutions at different locations (see Henon et al. 2009 for more details about the temperature recording). We have validated this code by comparing the temperatures obtained through the simulations with those recorded during the experiments. After this step of validation and a discussion on final composition of the organic matter in the experiments compared to the ones estimated by simulations, we have used this numerical model as an optimization tool. Modifying the initial, boundary and operating conditions we have been able to determine the best conditions to this particular composting process. A whole set of conditions is discussed in the paper

    A massively parallel OpenFOAM solver for Richards Equation: towards mechanistic modelling of transfers at the watershed scale

    Get PDF
    We focus on the development and test of a massively parallel OpenFOAM solver for Richards Equation, towards mechanistic modelling of flow and transport phenomena at the watershed scale

    Control of Hamiltonian chaos as a possible tool to control anomalous transport in fusion plasmas

    Full text link
    It is shown that a relevant control of Hamiltonian chaos is possible through suitable small perturbations whose form can be explicitly computed. In particular, it is possible to control (reduce) the chaotic diffusion in the phase space of a Hamiltonian system with 1.5 degrees of freedom which models the diffusion of charged test particles in a turbulent electric field across the confining magnetic field in controlled thermonuclear fusion devices. Though still far from practical applications, this result suggests that some strategy to control turbulent transport in magnetized plasmas, in particular tokamaks, is conceivable. The robustness of the control is investigated in terms of a departure from the optimum magnitude, of a varying cut-off at large wave vectors, and of random errors on the phases of the modes. In all three cases, there is a significant region of maximum efficiency in the vicinity of the optimum control term.Comment: 17 pages, 21 figure

    An open source massively parallel solver for Richards equation: Mechanistic modelling of water fluxes at the watershed scale

    Get PDF
    In this paper we present a massively parallel open source solver for Richards equation, named the RichardsFOAM solver. This solver has been developed in the framework of the open source generalist computational fluid dynamics tool box OpenFOAM® and is capable to deal with large scale problems in both space and time. The source code for RichardsFOAM may be downloaded from the CPC program library website. It exhibits good parallel performances (up to ∼90% parallel efficiency with 1024 processors both in strong and weak scaling), and the conditions required for obtaining such performances are analysed and discussed. These performances enable the mechanistic modelling of water fluxes at the scale of experimental watersheds (up to few square kilometres of surface area), and on time scales of decades to a century. Such a solver can be useful in various applications, such as environmental engineering for long term transport of pollutants in soils, water engineering for assessing the impact of land settlement on water resources, or in the study of weathering processes on the watersheds

    Easily retrievable objects among the NEO population

    Get PDF
    Asteroids and comets are of strategic importance for science in an effort to understand the formation, evolution and composition of the Solar System. Near-Earth Objects (NEOs) are of particular interest because of their accessibility from Earth, but also because of their speculated wealth of material resources. The exploitation of these resources has long been discussed as a means to lower the cost of future space endeavours. In this paper, we consider the currently known NEO population and define a family of so-called Easily Retrievable Objects (EROs), objects that can be transported from accessible heliocentric orbits into the Earth’s neighbourhood at affordable costs. The asteroid retrieval transfers are sought from the continuum of low energy transfers enabled by the dynamics of invariant manifolds; specifically, the retrieval transfers target planar, vertical Lyapunov and halo orbit families associated with the collinear equilibrium points of the Sun-Earth Circular Restricted Three Body problem. The judicious use of these dynamical features provides the best opportunity to find extremely low energy Earth transfers for asteroid material. A catalogue of asteroid retrieval candidates is then presented. Despite the highly incomplete census of very small asteroids, the ERO catalogue can already be populated with 12 different objects retrievable with less than 500 m/s of Δv. Moreover, the approach proposed represents a robust search and ranking methodology for future retrieval candidates that can be automatically applied to the growing survey of NEOs

    EndoVAscular treatment and ThRombolysis for Ischemic Stroke Patients (EVA-TRISP) registry: basis and methodology of a pan-European prospective ischaemic stroke revascularisation treatment registry.

    Get PDF
    PURPOSE The Thrombolysis in Ischemic Stroke Patients (TRISP) collaboration was a concerted effort initiated in 2010 with the purpose to address relevant research questions about the effectiveness and safety of intravenous thrombolysis (IVT). The collaboration also aims to prospectively collect data on patients undergoing endovascular treatment (EVT) and hence the name of the collaboration was changed from TRISP to EVA-TRISP. The methodology of the former TRISP registry for patients treated with IVT has already been published. This paper focuses on describing the EVT part of the registry. PARTICIPANTS All centres committed to collecting predefined variables on consecutive patients prospectively. We aim for accuracy and completeness of the data and to adapt local databases to investigate novel research questions. Herein, we introduce the methodology of a recently constructed academic investigator-initiated open collaboration EVT registry built as an extension of an existing IVT registry in patients with acute ischaemic stroke (AIS). FINDINGS TO DATE Currently, the EVA-TRISP network includes 20 stroke centres with considerable expertise in EVT and maintenance of high-quality hospital-based registries. Following several successful randomised controlled trials (RCTs), many important clinical questions remain unanswered in the (EVT) field and some of them will unlikely be investigated in future RCTs. Prospective registries with high-quality data on EVT-treated patients may help answering some of these unanswered issues, especially on safety and efficacy of EVT in specific patient subgroups. FUTURE PLANS This collaborative effort aims at addressing clinically important questions on safety and efficacy of EVT in conditions not covered by RCTs. The TRISP registry generated substantial novel data supporting stroke physicians in their daily decision making considering IVT candidate patients. While providing observational data on EVT in daily clinical practice, our future findings may likewise be hypothesis generating for future research as well as for quality improvement (on EVT). The collaboration welcomes participation of further centres willing to fulfill the commitment and the outlined requirements
    corecore