

To link to this article : doi: 10.1016/j.cpc.2014.08.004
URL : http://dx.doi.org/10.1016/j.cpc.2014.08.004

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12140

To cite this version : Orgogozo, Laurent and Renon, Nicolas and
Soulaine, Cyprien and Henon, Florent and Tomer, Sat K. and Labat,
David and Pokrovsky, Oleg S. and Sekhar, Muddu and Ababou,
Rachid and Quintard, Michel An open source massively parallel
solver for Richards equation: Mechanistic modelling of water fluxes
at the watershed scale. (2014) Computer Physics Communications
Package, vol. 185 (n° 12). pp. 3358-3371. ISSN 0010-4655

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/33663839?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An open source massively parallel solver for Richards equation:
Mechanistic modelling of water fluxes at the watershed scale✩

L. Orgogozo a,∗, N. Renon b, C. Soulaine c, F. Hénon c, S.K. Tomer d, D. Labat a,
O.S. Pokrovsky a,e, M. Sekhar f, R. Ababou c, M. Quintard c,g

a GET (Géosciences Environnement Toulouse), Observatoire Midi-Pyrénées, Université Paul Sabatier, Université de Toulouse, 14 avenue Édouard Belin,
31400 Toulouse, France
b CALMIP Toulouse University Computing Center/DTSI, Université Paul Sabatier, Université de Toulouse, 118 route de Narbonne, 31400 Toulouse, France
c Université de Toulouse , INPT, UPS , IMFT (Institut de Mécanique des Fluides de Toulouse), Allée Camille Soula, F-31400 Toulouse, France
d CESBIO (Centre d’Etude Spatiale de la BIOsphère), Observatoire Midi-Pyrénées, Université Paul Sabatier, Université de Toulouse, 18 avenue Edouard
Belin, BPI 2801, 31401 Toulouse cedex 9, France
e BIO-GEO-CLIM Laboratory, Tomsk State University, Tomsk, Russia
f Indian Institute of Science, Department of Civil Engineering, Indo-French cell for Water Sciences, Bangalore – 560 012, India
g CNRS; IMFT, F-31400 Toulouse, France

Keywords:
Variably saturated flow
Richards equation
OpenFOAM R©

Massively parallel computation
Transfers in soils
Porous media

a b s t r a c t

In this paper we present a massively parallel open source solver for Richards equation, named the
RichardsFOAM solver. This solver has been developed in the framework of the open source generalist
computational fluid dynamics tool box OpenFOAM R© and is capable to deal with large scale problems
in both space and time. The source code for RichardsFOAM may be downloaded from the CPC program
library website.

It exhibits good parallel performances (up to ∼90% parallel efficiency with 1024 processors both in
strong and weak scaling), and the conditions required for obtaining such performances are analysed
and discussed. These performances enable the mechanistic modelling of water fluxes at the scale of
experimental watersheds (up to few square kilometres of surface area), and on time scales of decades
to a century. Such a solver can be useful in various applications, such as environmental engineering for
long term transport of pollutants in soils, water engineering for assessing the impact of land settlement
on water resources, or in the study of weathering processes on the watersheds.

Program summary

Program title: RichardsFOAM

Catalogue identifier: AEUF_v1_0

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEUF_v1_0.html

Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland

Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html

No. of lines in distributed program, including test data, etc.: 1287

No. of bytes in distributed program, including test data, etc.: 9521

Distribution format: tar.gz

Programming language: C++.

Computer: any x86, tested only on 64-bit machines.

Operating system: Generic Linux.

Classification: 13.

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).
∗ Corresponding author. Tel.: +33 61 33 25 74.

E-mail address: laurent.orgogozo@get.obs-mip.fr (L. Orgogozo).

http://dx.doi.org/10.1016/j.cpc.2014.08.004

External routines: OpenFOAM R© (version 2.0.1 or later)

Nature of problem:
This software solves the non-linear three-dimensional transient Richards equation, which is a very
popular model for water transfer in variably saturated porous media (e.g.: soils). It is designed to take
advantage of the massively parallel computing performance of OpenFOAM R©. The goal is to be able to
model natural hydrosystems on large temporal and spatial scales.

Solution method:
A mixed implicit (FVM in the object oriented OpenFOAM R© framework) and explicit (FVC in the object
orientedOpenFOAM R© framework) discretization of the equationwith a backward time scheme is coupled
with a linearizationmethod (Picard algorithm). Due to the linearization loop the final solution of each time
step tends towards a fully implicit solution. The implementation has been carried out with a concern for
robustness and parallel efficiency.

Restrictions:
The choice of the maximum and initial time steps must be made carefully in order to avoid stability
problems. A careful convergence study of mesh cell size, linear solver precision and linearization method
precision must be undertaken for each considered problem, depending on the precision required for the
expected results, the spatial and temporal scales at stake, and so on. Finally, the solver in its current version
only handlesmesheswith a constant cell volume (a crashwill not necessarily occurwith an irregularmesh
but some problems may arise with the convergence criterion of the linearization method).

Running time:
Highly variable, depending on the mesh size and the number and nature of cores involved. The test run
provided requires less than 2 s on a 64 bit machine with Intel R© CoreTMi7-2760QM CPU @ 2.40 GHz× 8
and 3.8 Gigabytes of RAM.

1. Introduction

Many applications in the geosciences involve transfers of water
in variably saturated porous media, such as soils. From the point of
view of water engineering, the direct infiltration of rainwater into
soils is the main recharge of aquifers, and is also their main source
of pollution, for instance through infiltration of dissolved nitrates
and pesticides. Accuratemodelling of water transfer in soils is thus
important for water engineering applications. On the other hand,
water transfer in porous media controls water content in the soil
profile, which is one of the driving parameters of weathering [1],
the key process in the carbon cycle [2].

It is generally admitted (for example, [3–5]) that mechanistic
approaches are the ‘‘gold standard’’ [5] formodelling natural water
systems, since they allow quantitative and predictive assessment
of water flows. Such tools are thus of great interest for studying
the impact of global changes on weathering processes, which re-
quires modelling under evolving climatic conditions (e.g.: ‘‘dry’’ or
‘‘wet’’ warming). The design of water management infrastructures
(e.g.: dams,wells) also leads to thenecessity ofmodelling thewater
transferswithin changingwater systems, and thus requires the use
of mechanistic modelling approaches. In order to perform mecha-
nistic modelling of water flows in soils, it is necessary to be able
to quantitatively assess the spatial and temporal evolution of wa-
ter pressure and water content. The most widely used approach in
order to reach this goal is numerical resolution of the three dimen-
sional Richards equation [6]. This equation is an approximate so-
lution of the general two-phase flow in porous media model based
on generalized Darcy’s laws [7], assuming that the pressure gradi-
ent in the gas phase is small. This assumptionmay be questionable
under certain circumstances, in particular trapped gas phase in
less permeable lenses. Similarly, the generalizedDarcy’s lawmodel
itself is not entirely supported by upscaling theories ([8–13];
etc.) and is the subject of current research. However, up to now,
Richards equation is still the model of choice in engineering prac-
tice and provides applicable results in many cases. In addition,
Richards equation is used in applications other than the modelling

of natural water system, such as nuclear waste repository (e.g.:
[14]) or proton exchange membrane fuel cell (e.g.: [15]).

Richards equation is based on Darcy’s law with pressure-
dependent, or moisture dependent, hydraulic conductivity. It is
applicable under the usual conditions of pressure and tempera-
ture, with water considered an incompressible fluid, with the air
phase remaining connected to the atmosphere (fixed air pressure)
and having a negligible viscosity. Additionally, the hysteresis ef-
fects that may be encountered in the case of successive imbibi-
tion/drainage cycles [16] are neglected in this work. The Richards
approach then leads to the following governing equation for water
flow in a variably saturated porous medium:

∂θ

∂t
= C (h)

∂h

∂t
= ∇. (K (h) .∇ (h+ z)) . (1)

In this equation, h is the pressure head expressed as length of
water column (m), z is the vertical coordinate (m) (oriented up-
ward),K(h) is the hydraulic conductivity of the unsaturated porous
medium (m s−1), θ(h) is the volumetric water content (m3 m−3)
and C(h) is the capillary capacity (also called specific moisture ca-
pacity) of the unsaturated porous medium (m−1). Leaving ∂θ/∂t
on the left hand side leads to the so-calledmixed formulation of the
Richards equation in numerical implementations. With C(h)∂h/∂t
on the left hand side, we have the pressure formulation of Richards
equation,which is that adopted in thiswork, and is also historically
the original equation of Richards [6]. Water content formulations
also exist, but they are limited to strictly unsaturated situations
without the possibility of pressure build up in saturated zones. One
can refer to [17] for a detailed discussion of the mixed formulation
for implicit 3D finite volumes, and to [18] for a systematic compar-
ison of these various formulations for 1D unsaturated flows.

The main complexity of the Richards equation lies in the non-
linearities due to the pressure dependent hydraulic conductivity
K(h) and of the pressure dependent capillary capacity C(h). These
dependencies, as well as the water content–pressure relationship
(the water retention curve θ(h)), are treated with empirical mod-
els such as that of Brooks and Corey [19] or the van Genuchten

model [20] which is based in part on the functional model of
Mualem [21]. The van Genuchten/Mualem model is very popu-
lar and will be the one used in this work, but adopting a differ-
ent model would not pose any implementation difficulty. Here is a
brief summary of the van Genuchten model, expressed in terms of
θ(h), C(h) and K(h):

Retention curve θ = f (h) (–)
{

θ = θs if h ≥ 0

θ = (θs − θr)
(

1+ (−αh)n
)−(1−(1/n))

+ θr if h < 0
(2)

Capillary capacity C(h)
(

L−1
)

,

C(h) = S if h ≥ 0
C(h) = (θs − θr) αn (1− (1/n))

× (−αh)n−1
(

1+ (−αh)n
)−(2−(1/n))

if h < 0

(3)

Hydraulic conductivity
(

L T−1
)

,

K(h) = Ks if h ≥ 0

K(h) = Ks

(

(

1+ (−αh)n
)−(1−(1/n))

)(1/2)

×

(

1−

(

1−
(

(

1+ (−αh)n
)−(1−(1/n))

)(n/n−1)
)1−(1/n)

)2

if h < 0.

(4)

In addition to previously defined variables, θs is the saturation
water content (–), θr is the residual water content (−), Ks is the
saturated hydraulic conductivity

(

m s−1
)

, S is the specific stora-
tivity coefficient of the porous medium under positive pressure
only

(

m−1
)

, and finally, α
(

m−1
)

and n (–) are empirical param-
eters which are characteristics of the considered soil (see for ex-
ample [22]). The inverse of α may be considered a characteristic
capillary length scale of themedium. Therefore, the Richards equa-
tion is a non-linear diffusion/conduction PDE which contains an
additional hyperbolic (gravitational) termwith strongly non-linear
coefficients which may be spatially variable.

Mechanistic flow modelling with the Richards equation con-
sists of numerical resolution of this equation in the domain under
consideration. In order to apply this approach to the weathering
process, large scale modelling is necessary, both from the spatial
and temporal point of view. From the spatial point of view, water-
shed scale (> several km2)must be considered in order to calculate
mass balances involving, for instance, weathering fluxes. From the
temporal point of view, one should, for instance, consider the time
scale of the observed global warming, i.e., the century scale. Such
large scales may be encountered in a number of environmentally-
relevant applications, such as the evolution of water resources in
the context of climate change or the quantification of long termmi-
grations of pollutants within soils. These space–time requirements
constitute a major challenge for mechanistic modelling, with very
long computational times and very large memory requirements to
be expected [23]. As such, the application of a mechanistic mod-
elling approach to such large space and time scales requires the
use of state of the art numerical techniques and hardware, and, ac-
cording to Miller et al. [5], ‘‘the efficiency of serial computers has
approached its limit, and increased hardware efficiencywill be pri-
marily based on parallel computing’’.

A number of numerical tools for modelling of water transfers
in soils are already available (e.g.: [24–33]). However, these tools
do not allow (or were not tested) for the use of parallel compu-
tations. Efforts to build and test parallel solvers were then made
(for instance, [4,17,34–40]), but these solvers have low or moder-
ate parallel efficiencies, particularly when used inmassively paral-
lel computations (with several hundreds of cores—note that only a
fewwere even testedwithmore than ahundred cores). The parallel
solver for Richards equation proposed byHardelauf et al., 2007 [41]
exhibits good parallel performances up to 256 cores, but no scaling

for a higher number of cores is shown. Indeed, massively parallel
computations are required tomodel unsaturated flowprocesses on
large spatial and temporal scales, and recent works propose tools
which allow such massively parallel computations with good par-
allel performances [42–47]. For example Maxwell [47] obtains, in
a weak scaling exercise, parallel efficiencies of between 80% and
90% with 16384 processors, depending on the type of precondi-
tioner used. These are good parallel performances, and will proba-
bly be assessed depending on several factors such as the frequency
of the I/Os. The originality of the present work is to propose a fully
open-source solverwith parallel performances on a level compara-
blewith the current state of the art works as cited above (e.g.: [47])
within a generalist open source platformof computational fluid dy-
namics: OpenFOAM R©. One of the advantages of using such a mul-
tiphysics toolbox is the possibility of adding easily other transport
mechanisms, such as transport of chemical species, heat transfer,
etc., without complex implementation problems. In addition, one
can use in conjunction with RichardsFOAM the various numerical
tools for pre-processing, meshing, post-processing, etc., that are
(and have been) developed by the broad community of develop-
ers and users of OpenFOAM R©.

In this work we propose a massively parallel 3D solver for
Richards equation, RichardsFOAM, developed in the framework of
OpenFOAM R© [48–50], an open source finite volumes tool box de-
signed to allow the use of massively parallel computing. Finite
volumes schemes (structured or not) have proven to be suitable
for the resolution of Richards equation (see for instance [51,52],
and some of the works cited above) and, therefore, they are well
adapted to our problem. OpenFOAM R© is based on an object-
oriented C++ coding approach, built since the beginning of its
development for massively parallel computations, and within
which a large variety of numerical tools are available (meshing
tools, schemes of discretization, pre-processing tools, precondi-
tioners, linear solvers, post-processing tools, visualization tools,
etc.). It allows fast implementation of new solvers for specific
equations through high-level C++ statements. Because the sources
are completely open, it allows the collaborative development of
new numerical tools by large groups of developers. The fact that
OpenFOAM R© is a generalist platform is also interesting as many
tools and utilities have been developed and released by the
whole community of developers and users from various scien-
tific and engineering areas (transportation, chemical processing,
marine, energy, medical systems. . .) on a regular basis for years.
These tools and utilities may thus be used directly in conjunc-
tion with RichardsFOAM (or any other numerical tool developed
within OpenFOAM R©). Thus OpenFOAM allows a fast circulation of
ideas and implementation innovations between the various fields
of computational continuum mechanics. Some applications of
OpenFOAM R© to porous media flow have been recently developed
(e.g.: [53]), and the potential of OpenFOAM R© in the field of wa-
ter sciences is more andmore recognized (for instance, [54–56,5]).
Very few works present applications of OpenFOAM R© in this sci-
entific area, however (with the notable exception of Furbish and
Scmeeckle [57] in the field of sediment transport). Moreover, to
our knowledge, no publishedwork focus on the application, evalu-
ation and characterization of the massively parallel capabilities of
OpenFOAM R© in the geosciences, although this has been handled
in other fields such as nano-scale flows [58]. Finally, this solver for
water flows in soils is intended for being the core of a more com-
plete tool formodelling transport in continental surfaces, including
thermal transferswith phase changes, reactive solute transfers and
the coupling of surface flows and subsurface flows. Our main goal
is to propose a fully open source, massively parallel, modelling en-
vironment for the hydrogeosciences and the related engineering
applications in the framework of a widely used generalist compu-
tational fluid dynamics platform: OpenFOAM R©.

The remainder of this paper is organized as follows. After a pre-
sentation of the theoretical and numerical choices made for the
developed solver (the so-called RichardsFOAM solver), and a de-
scription of the hardware used, we exhibit a number of application
cases: an analytical validation (in electronic supplementary ma-
terial, Appendix A), a code-to-code validation and an application
to a set of field data involving a heterogeneous soil column in a
monsoon climate. An assessment of the parallel performance of the
RichardsFOAM solver is then proposed, through two types of scal-
ing analyses: a strong scaling analysis, and a weak scaling analysis.
Finally, we discuss the potential for applying this parallel solver to
the study of weathering processes at the watershed scale, which
is the application for which we have handle the present work, and
associated perspectives.

2. Material and methods

2.1. Computational issues

The implementation of RichardsFOAM was conducted while
bearing in mind three major constraints closely related to the
purpose of this tool: the modelling of flow in soils for large space
and time scales for catchment hydrology.

The first constraint is that the memory (RAM) requested by the
computation needs to be as small as possible, in order to deal with
the largest possible space scales with adequate mesh refinement.

The second constraint is that the solver needs to be as stable
as possible, under the broadest range of conditions, either numer-
ical (time steps) or physical (e.g.: gravitational advection versus
capillary diffusion effects). It should also be robust enough to deal
with the dramatically changing hydrological regimes that can be
encountered in catchment hydrology.

The third constraint is that the computation timehas to be small
enough to allow simulations on large time scales, up to a cen-
tury, for example, in the context studying the effects of the global
changes on the functioning of the critical zone (see for example [1])
or for the long term study of polluted areas (for instance [47]).

2.2. Implementation

We have chosen to use a simple Picard algorithm to linearize
Richards equation, so as to meet the first and second constraints.
Indeed, the Picard algorithm exhibits slower convergence rates
than the Newton algorithm in general. However, the Newton al-
gorithm implies the computation and storage of the Jacobian ma-
trix associated with the problem considered, which implies a
huge increase in memory needs compared to the Picard Algorithm
(see for example [59–61]). A Jacobian-free Newton algorithm does
exist, but it still requires more memory than the Picard algorithm.
In addition, by sharply changing regimes when large numbers of
linearization iterations are encountered, it can lead to highermem-
ory needs than classical Newton linearization [62]. On the other
hand, the Picard algorithm is recognized as more robust than the
Newton algorithm (e.g.: [61,63,64]). For these two reasons, despite
the fact that published massively parallel solvers for groundwater
transfers do use the Newton algorithm for linearization purposes
(for instance, [43,47]), we preferred to use a Picard algorithm for
our solver. As well as the classical Picard linearization algorithm, a
modified Picard linearization algorithm has been implemented in
order to seek mass conservation (e.g.: [59,65]). Indeed, mass con-
servation problems may occur when using a pressure formulation
of the Richards equation inappropriately, as mentioned (among
others) by Celia et al., 1990 [66].We have chosen here to use a clas-
sical Picard algorithm in conjunction with a chord slope approxi-
mation, which also ensures mass conservation (see the paragraph

below which concerns the discretization of the time derivative).
A detailed discussion about different methods of dealing with the
non-linearity of Richards equation may be found in [67]. As stated
previously we have used the classical van Genuchten/Mualem
model [20,21] to establish the non-linear dependency of hydraulic
conductivity on water pressure and the water retention curve. The
transition between saturated and unsaturated conditions, i.e., pos-
itive or negative water pressure, impacts strongly this dependency
(see Eqs. (3) and (4)). In order to deal with this transition, the op-
timized high-level functions applicable on 3D scalar fields which
are available in OpenFOAM R© (such as the ‘sgn’ function) have
been used. In this way the variations of hydraulic properties of
the porous medium with the water pressure may be handled us-
ing only basic operations (multiplications and additions) on scalar
fields, which results in a highly scalable implementation. One can
see in Appendix B (in electronic supplementary material) an illus-
tration of the good scaling behaviour of this implementation in case
of the occurrence of a transition between saturated and unsatu-
rated conditions.

For solving the linear systems, we chose a Krylov linear solver
with a diagonal incomplete Cholesky preconditioner (DIC-PCG). A
Preconditioned Conjugate Gradient is a classical approach for solv-
ing linear systems resulting in the linearization of Richards equa-
tion (for example, [68–70,39,37,47]). One can find an extensive
discussion on the preconditioning methods for the parallel res-
olution of Richards equation with a Picard linearization and a
Krylov linear solver in Herbst et al., 2008 [37]. They found that the
best classes of methods among those tested were the incomplete
Cholesky and the multigrid methods, with slightly more efficiency
with the testedmultigridmethod (algebraicmultigrid). Theymade
their tests with a small number of cores (32 and 64), however, and
it is well known that multigrid methods lead to load balance prob-
lems when used with a large number of cores (i.e., hundreds or
thousands). This is the reason we chose an incomplete Cholesky
preconditioning method rather than a multigrid preconditioning
method. Regarding the linear solver itself, it has been shown that
Conjugate Gradient solvers are particularly suitable for parallel
computing, because only nonzero elements need to be stored in
this method [71]. One can note that more efficient linear solvers
than Krylov solvers (at least for serial computations or parallel
computations with low numbers of cores) have been implemented
in OpenFOAM R©, for example the geometric agglomerated alge-
braic multigrid linear solver (GAMG). Nevertheless, the fact that
conjugate gradient linear solvers exhibit better load balance be-
tween processors in parallel runs with a large number of proces-
sors, than the GAMG linear solver, led us to choose the classical
PCG solver. We thus favoured good overall parallel performances
rather than speed in the case of small numbers of processors, since
the goal of RichardsFOAM is to dealwithmassively parallel compu-
tation. However, due to the architecture of OpenFOAM R©, it is pos-
sible to easily switch to the GAMG linear solver if it ismore suitable
for a given application (run on only tens of cores for instance). One
can refer to Wheeler and Peszyńska [72] for a comparative discus-
sion of preconditioned Krylov methods and multigrid methods in
the context of parallel computing.

The choice of the linearization method and of the linear solver
were based on the constraints of low memory needs and robust-
ness rather than low computation times, in order to be able to deal
with strongly varying hydrological regimes (see the example of
computation in a monsoon context in Section 3.2). However, the
studies of scaling presented in Section 4 show that the careful im-
plementation of OpenFOAM R© leads to relatively low computation
times anyway.

Following established procedures (e.g.: [73–75,47]) we dis-
cretized the time evolution with a backward Euler time scheme,
because of its well-known stability. For the same reason we use

a chord slope approximation for estimation of the capillary capac-
ity (Rathfelder and Abriola, 1994) [76], because this approximation
allows a mass conservative use of the pressure formulation of the
Richards equation with a classical Picard algorithm. One can refer
to [77] for a study of the comparative merits and drawbacks of the
chord slope approach. The chord slope approximation is also used
in well-known Richards solvers (for instance [17]).

We built a stabilized adaptive time stepping procedure in order
to respond to the constraint of stability and of small computation
times. There is no need to use small time steps when the varia-
tions of hydrologic conditions are smooth, as it would needlessly
increase the computation time. However, when sharp changes in
hydrologic conditions occur, one needs to immediately diminish
the time step to an adequate level. These are the reasons numerous
researchers have implemented adaptive time step procedures for
the solving of Richards equation (for example, [17,78,79,30,75,27,
28,39]). Here, we have implemented a classical procedure which
increases the time step after a given (user specified, 10 is a possi-
ble default value) number of time stepswith a small number of lin-
earization iterations (3 iterations is a possible default value for the
associated threshold), but which immediately decreases the time
step when convergence problems are encountered (i.e., when the
Picard linearization loop fails, or makes too many iterations; a de-
fault value for the associated threshold may be 8 iterations). The
decrease/increase is made through the division/multiplication of
the current time step with a user specified scaling factor (1.3 is
a reasonable default value). In this procedure, a time step with a
convergence problem is rerun with progressively decreasing time
steps until convergence is reached. This simple approach is the one
that Williams and Miller (1999, [78]) call the ‘Empirically BAsed
Time Step’ scheme (EBATS), and it consists in fine in selecting an
adequate time step series to achieve a proper functioning of the
linearization process. These authors compared the results of this
method with those obtained from the multistep BDF (Backward
Differentiation Formula) methods for the selection of solution or-
der and step size (Brenan et al., 1996 [80]). According to theirwork,
the use of the empirical method may require longer computation
times than the use of multistep BDF methods but leads to similar
accuracy. The use of BDF methods also allows prescription of the
temporal truncation error, which is not possible when only using
the EBATS method. Another way to prescribe the maximum tem-
poral truncation error is the use of a Richardson approach, which
evaluates the temporal truncation error through a dual time step-
ping (e.g.: Belfort et al., 2007 [81], Gasda et al., 2011 [82]). A bench-
mark of various reactive transport codes, including a discussion of
different adaptive time stepping procedures may be found in Car-
rayrou et al., 2010 [83]. At this point, wemust stress that in the case
of a Picard linearization method, the use of EBATS time stepping
control is strongly recommended in order to ensure convergence
of the Picard linearization loop. The additional use of more com-
plex time stepping procedures such as multistep BDF or Richard-
son methods would ensure a temporal truncation error control,
andmay consequently reduce the number of Picard iterations. One
major drawbacks of the EBATS method is that the control param-
eters of the adaptive time stepping (e.g.: maximum time step, ini-
tial time step, etc.) needs to be evaluated empirically, depending
on the physical features of the problem considered. The initial and
maximal time steps used for the test cases presented in this paper
are given as examples of possible parameterizations. One should
note that, in the case of a too ‘cautious’ (small) initial time step,
the EBATS procedurewill increase its value relatively quickly. Thus,
in case of doubt, there is no critical problem with taking a very
small (e.g.: 0.1 s) initial time step. Nevertheless, the EBATSmethod
has been shown to be quite simple and robust [78,83] which ex-
plains its popularity [27,28,30,39]. We have also used this simple
method, however the additional use of a multistep BDF method or

the Richardson method may lead to more efficient solving proce-
dure (truncation error control, optimality of the sequence of time
steps; see for example [79,75,81,82]).

Finally, while for each linear system produced by the Picard lin-
earizationwe have adopted an implicit integration for the pressure
terms, we have used an explicit integration for the gravity term
(with a simple linear interpolation for evaluating the effective hy-
draulic conductivity at the cells faces). This has been imposed by
the handling of boundary conditions in OpenFOAM R©. The explicit
formulation of the gravity termwas in order to avoid problems en-
countered while applying the implicit differential operators to the
sum of two scalar fields—here pressure and altitude, see Eq. (1)—
because patches for the definition of boundary conditions are de-
fined for both fields. However, the explicit discretization of the
gravity term ismitigated by the Picard loop, because at each Picard
iteration the pressure field considered for the explicit estimation
of the gravity term is that of the previous Picard iteration, and not
that of the previous time step. Thus, at convergence of the Picard
loop, the expression of the gravity term is almost implicit.

Given the above discussion, we can summarize our implemen-
tation of the RichardsFOAM solver in 6 points:

- Picard algorithm for linearization,
- Mixed formulation with chord slope approximation for the
capillary capacity,

- Backward time integration scheme for all terms except gravity
terms,

- Forward time integration scheme for gravity terms,
- Stabilized adaptive time stepping procedure,
- Diagonal Incomplete Cholesky-Preconditioned Conjugate Gra-
dient (DIC-PCG) for the linear system solver.

One can find more elaborate and recent methods for some of the
six points presented above (i.e., Newton linearization instead of
Picard linearization, use of multigrid methods, etc.), however, we
have made our implementation choices in light of our three ma-
jor constraints (memory use parsimony, maximal stability and ro-
bustness, and computation times as small as possible), and this led
us to use the simple and classical but reliable and highly scalable
methods presented above.

2.3. Parallel aspects

The parallel computing in OpenFOAM R© is based on the applica-
tion programme interface MPI (Message Passing Interface) proce-
dures, with the use of the mesh partitioning approach. It is based
on a Single Program–Multiple Data (SPMD) approach: each core
makes the computations on a geometrical fraction of the resolu-
tion domain, and runs the same programme on this sub-domain
thatwould be used on thewhole domain in serial computation. The
boundary condition at the edge of each sub-domain is the physical
boundary condition if the edge is also an edge of the global do-
main, or an inter-cores communication boundary condition if the
edge is interior to the global domain. The mesh partitioning ap-
proach is the most frequently used parallelization strategy in un-
saturated flow modelling (e.g.: [35–38,43,46,47]), although other
approaches exist, such as parallelization by loop decomposition
(for example, [34,39,40]). Nevertheless the loop decomposition ap-
proach is used only for a small number of cores (one tenth or less).

In order to achieve high parallel performances one needs to
ensure that two main requirements are satisfied: a good compu-
tational load balance between cores, and a sufficiently high ratio
between computational operations and inter-cores communica-
tion operations.

The computational load must be fairly balanced between each
computing process (core), otherwise the slower core will delay the
whole computation. The choice of themesh partitioningmethod is

Fig. 1. Geometry, initial conditions and boundary conditions of the problem
considered for code-to-code validation.

critical in this regard. In the framework of OpenFOAM R©, different
partitionmethodsmay be used: simple, hierarchical, scotch, metis,
or manual (cf. [84]). In this work, we used the simple method be-
cause the simplicity of the geometry of the cases presented in this
paper allows it to reach perfect load balance in terms of the number
ofmesh cells by process (core). The choice of the linear solver is also
important: as discussed above, some very efficient linear solvers
like GAMGwill cause problems of load imbalance inmassively par-
allel runs. For this reason we preferred a PCG linear solver.

The ratio between computation and communicationneeds to be
high enough, otherwise the computations within a given core will
be ended before they can be sent and received from one process
(core) to another, hence periods of inactivity (wait) will be of the
samemagnitude as the period of computing. There are twoways of
limiting communications weight: (i) limiting the size of interfaces
between sub-domains of the mesh (control the amount of com-
munication) and (ii) keeping a high ratio between the number of
elements of a sub-domain and the number of elements at the inter-
faces (more computation than data transfer). The first point must
be achieved by a careful choice of the mesh partitioning method.
The second point requires a large enough cell number by process
(core): small scale computations tend not to be made with good
parallel performances (e.g., Ref. [35]). A final point to be considered
in the case of a non-linear equation such as the Richards equation is
the method of implementing the exit test of the linearization loop.
The criterion for exit of this loopmust be evaluated globally (i.e., for
the whole domain, including all subdomains). The global evalua-
tion of the criterion of exit implies an additional global reduction
operation at each iteration of the linearization loop, but if the crite-
rion is estimated locally (only on the sub-domain associatedwith a
given core for the computation done by this core), the convergence
of the computation will be mesh partitioning-dependent.

2.4. Hardware and system

For this work, all parallel computations were run on the Clus-
ter ‘‘Hyperion’’ of the Scientific Computing Centre of University of
Toulouse (CALMIP, www.calmip.cict.fr). The distributed memory
part of Hyperion is a cluster Altix ICE 8200 SGI R© purchased in 2009
(reach #223 TOP 500 in November 2009). The cluster gathers 368

computing nodes (2944 cores), each node includes 2 quad-coreNE-
HALEM Intel R© processors 2.8 GHz and 36 GB of RAM. The fast in-
terconnection of the cluster involves DDR Infiniband Technology,
via two physical Infiniband interconnects and so two IB links are
associated with each computing node. The theoretical bandwidth
at node level is thus 40Gb/s instead of 20Gb/s for a single IB DDR
link. Moreover at the application level, Message Passing Interface
communications use fast interconnection fabric, although one of
The IB DDR links (and always the same one) is devoted to I/O traf-
fic (read/write data on file system). This is important to properly
analyse subsequent performance. Finally the topology of these two
distinct interconnections is a hypercube topology. We used the lo-
cal Lustre file system to bench I/O performances of RichardsFOAM.
The characteristics are the following: 200TB of disk space, 4 Object
Storage Servers, one Meta-Data Server and a measured bandwidth
performance of 3GB/s. Lustre is a well-known andwidespread par-
allel file system for high performance computing, thanks, among
other things, to its ability to handle a large number of clients (or
nodes). It is used, for instance, in the system CURIE thin nodes at
CEA (France) (#11 in November 2012’s TOP500; CURIE has more
than 4000 thin nodes). In addition to technical aspects related to
distributed computations, we also used a fat node with a large
amount of shared memory (3 TB) to handle some steps related to
pre-processing, for instance, to construct and partition meshes in
some huge cases.

3. Applications

In this section we will present several applications of Richards-
FOAM in order to point out the capabilities of this solver. First, a
code-to-code validation is presented for a transient case. A field
data set obtained from an agricultural area in a monsoon affected
region is then studied, in order to illustrate the ability of Richards-
FOAM to handle field data chronicles and to deal with strongly
contrasting hydrological regimes. In addition, in Appendix A (elec-
tronic supplementary material) one can find an analytical valida-
tion in a very simple steady state case. We do not present further
validation cases because as mentioned in the implementation part
(Section 2.2) we usewell known, simple and classical (but reliable)
numerical methods for the solving of Richards equation.

3.1. Code-to-code validation

In order to proceed to a validation of RichardsFOAM in tran-
sient conditions, we must perform a code-to-code benchmark on
a simple 1D infiltration case with the well-known Richards equa-
tion solver Hydrus-1D (e.g.: [27,28]). The mesh is a regular grid of
1 cmmesh cells for both codes, the initial time step is 5min and the
maximum time step is 1 h. We consider the infiltration of water in
a loam column (Ks = 2.89× 10−6 m s−1;α = 3.6 m−1; n = 1.56;
θs = 0.43; θr = 0.078) of 1 m thickness. The initial condition is a
constant pressure field of−1m. The bottom boundary condition is
a free-drainage condition and the top boundary condition is a fixed
pressure equal to 0.01 m. One can see in Fig. 1 the features of the
problem considered.

We have computed the time and space evolution of the pres-
sure field within the soil column until a steady-state is reached
with both models, Hydrus-1D and RichardsFOAM. One can see a
comparison between the results of each models in Fig. 2, in terms
of average water pressure in the soil column (i.e., integral over the
column of the pressure field divided by the volume of the column)
and in terms of top water flux as a function of time.

There is good agreement between both computations. For ex-
ample, the absolute values of the relative differences between the
computed fluxes are strictly lower than 1.5%.

Fig. 2. Comparison of Hydrus-1D results and RichardsFOAM results for a 1D transient case.

3.2. Field test case: multilayer soil column with time variable
boundary condition

In this sub-section we want to illustrate the ability of Richards-
FOAM to handle time variable input data provided by the obser-
vation of natural systems, as well as to run simulations of flows
in contexts with abrupt changes in hydrological regimes. Indeed,
strongly varying hydrological regimes lead to rough numerical
problems, due to the steeppressure frontswhich occur in such con-
ditions (see for example [85]).We consider here a data set acquired
in South India, from a turmeric field in the state of Karnataka [86].
In this region, the monsoon climate causes highly contrasting dry
and wet seasons. Rain, irrigation and potential evapotranspiration
weremeasured on a daily basis during 2011, as was the water con-
tent in the soil at 40 cm depth and 120 cm depth. Actual evap-
otranspiration was estimated using a Thornthwaite balance with
the assumption of an easily useable water storage of 100 mm. This
allows the use a time varying Neumann top boundary condition
which takes into account combined precipitation and actual evap-
otranspiration (using the groovyBC tool [87]). This approach re-
quires pre-processing of the data before the implementation of the
top boundary condition, and allows only a rough estimate of this
boundary condition A more integrated way of dealing with these
top boundary conditions would lead to consideration of additional
mass balance equations for estimating actual evapotranspiration
on the basis of potential evapotranspiration, by considering the hy-
dric state of the first soil layers ‘on the fly’, but this is beyond the
scope of this work. An Auger hole investigation established a rough
representation of the soil column, with the identification of three
layers in the first 2m. The bedrock is at an average depth of 10m in
this area. One can see in Fig. 3 the configuration of the considered
soil column.

The rain, irrigation and actual evapotranspiration data were
used as input for RichardsFOAM, and a fitting exercise was un-
dertaken to get an acceptable correspondence between computed
andmeasured water contents. Themesh used here was a 1D-mesh
with 1 cm thick cells. The precision for the PCG linear solver was
set to 10−11 m, and to 10−9 m for the Picard linearization. The ini-
tial time step was set to 1 min and the maximum time step was
set to 1 h. It is important to note that, in order to get an efficient
and accuratemodelling, these numerical features need to be tuned
for each application under consideration, depending on the preci-
sion required for the results, the spatial and temporal scales under
consideration, and so on. We limited our computational domain
to the first three metres of the soil column since sensitivity tests
have shown that the values for the water content of the first two
metres of soils (where the measurements take place) have a very
weak dependency on the flow properties beyond 3 m depth (data
not shown). We also make the assumption that run off could be
neglected on the considered plot. Therefore, this exercise is only
an illustrative example and does not pretend to deal with the full

complexity ofwater flows in the considered area. Nevertheless, the
measured data set and the comparison between numerical results
and observations are presented in Fig. 4.

One can see in Fig. 4 that we have a strongly varying hydro-
logical regime, with a dry season from November to March and a
wet season from April to October, which is typical of an area with
a monsoon climate.

The fitting of the parameters has been done on the soil hydrody-
namic properties of the van Genuchten soil model. The set of fitted
parameters is presented below:

K layer 1
s = 10−3 m s−1; αlayer 1 = 2.3 m−1; nlayer 1 = 1.2;

θ layer 1
s = 0.45; θ layer 1

r = 0.08
K layer 2
s = 10−5 m s−1;αlayer 2 = 2.1 m−1; nlayer 2 = 2.4;

θ layer 2
s = 0.5; θ layer 2

r = 0.2
K layer 3
s = 10−6 m s−1; αlayer 3 = 1.7 m−1; nlayer 3 = 1.9;

θ layer 3
s = 0.55; θ layer 3

r = 0.15.

(5)

We obtain reasonably good agreement between numerical results
and observations, with an averaged relative difference of less than
2% (and an average of the absolute values of the relative differences
less than 8%), which is lower than the precision of the measure-
ments themselves (about 10%–20%). One can see that the first soil
layer has quite high hydraulic conductivity. This could be due to
the fact that this fitted hydraulic conductivity takes into account
the existence of macropores in this first layer.

Overall, RichardsFOAM shows good capacity to handle real cli-
matic data set in a layered soil column, in strongly varying hydro-
logical regimes.

4. Study of the parallel performances

All performance results are based on computing experiments
that were run on the system described in Section 2.4. As previously
mentioned we used NEHALEM Intel R© 2.8 GHz cores that deliver
more than 11Gflops/s. Peak performance for 1024 cores, which is
thehighest boundof this parallel study, is thus above 11264Gflop/s
(11.26Tflop/s peak). As our interest is in the parallel performances
we can achieve (see subsequent sectionwith strong andweak scal-
ing), we will also focus on the I/O impact on parallel performances.
Indeed I/O operations (e.g.: writing of results) may be a critical
source of non-scalability, but parallel numerical tools like Richard-
FOAMmust of course provide results to be analysed in order to be
useful, and thus I/O are necessary.

4.1. Conditions of runs

Most of the runs undertaken on the cluster ‘Hyperion’ (cf. Sec-
tion 2.4) have been performed in production conditions, with
many other jobs running on the cluster at the same time. A job
scheduler handles the scheduling of the workload on the system.

Fig. 3. Soil column considered for the real data set fitting exercise, with the associated computational domain.

A computing resources request is expressed in terms of nodes
(cores+memory) and elapsed time. Resources that are finally al-
located are exclusives. Nevertheless, there are no constraints, and
so no guarantees, of any interconnection topology affinity in the
group of computing nodes that are selected by the job scheduler.
Eventually, even if computing resources are allocated in an exclu-
sive mode, this will not be the case for the Lustre File system (cf.
Section 2.4). More precisely, its bandwidth is potentially shared by
all applications (jobs) currently running on the system. In the sub-
sequent sections, wewill implicitly use themapping of one process
MPI for one physical core. For each run, we complete all cores of
a socket (quad-core), and each socket of the computing node (bi-
socket nodes).

4.2. Strong scaling

In this part we assess the ability of RichardsFOAM to speed up
computation related to parallel computing. Themethod adopted is
a strong scaling study: we solve the same problem on more and
more cores and we study the evolution of the associated speed up.
The case considered is an infiltration of rainwater over 10 days on a
3D homogeneous slope of dry loam (initial water pressure:−10m,
soil properties identical to those considered in Section 3.1), with a
river at the bottom. We consider a 10 m thick slope, with a length
andwidth of 1.7 km. The total associated surface is 2.9 km2 and the
total volume of the considered domain is about 29millionsm3. The
slope is inclined at 20° in a direction orthogonal to the river, and
the river is inclined at 3°. One can see the considered geometry in
Fig. 5, the boundary conditions and initial conditions.

We have chosen to consider a case with an homogeneous soil
because a random and spatially uncorrelated heterogeneity of the
medium does not impact the scalability when using a Picard-PCG
approach of solving (see an illustration of this point in electronic
supplementary material, Appendix B). In case of a medium hetero-
geneity with a spatial correlation (e.g.: layering, lenses of mate-
rial with different mean hydraulic conductivity, etc.) at the length
scale of the size of the sub-domains, or in case of occurrence of
steep fronts of water pressure within the medium, some compu-
tation sub-domains may experience strong penalizing numerical

conditions compared to the other sub-domains. Then the scalabil-
ity may be damaged. We think however that it would be related to
problems of mesh partitioning optimality, not to the solver im-
plementation itself (see [70]). Moreover, the implementation of
RichadsFOAM limits the impact of the steepness of the considered
problem on the scalability (see an illustration of this point in elec-
tronic supplementary material, Appendix B). Thus we have also
considered smooth hydrological regimes (in particular, no transi-
tion between saturated and unsaturated conditions during the in-
filtration) for this strong scaling analysis aswell as for the following
weak scaling analysis.

A careful convergence study (criterion: less than 5% of maxi-
mum relative difference compared to the free mesh dependency
and free precision dependency results, data not shown) leads to
the conclusion that acceptable results in term of average soil wa-
ter content in the slope can be reached with a regular mesh with
cells of 2 m × 2 m in the horizontal plane and 0.2 m in a vertical
direction (which leads to a mesh size of about 36 million cells), a
precision of 0.1 mm for the PCG solver and a precision of 1 mm for
the Picard loop. The initial time step is 0.1 s and themaximum time
step is 30 min. Indeed, this prior step in the convergence study is
necessary in order to obtain accurate quantitative results (e.g.: [5]).
With such features, it is possible to catch the transient infiltration
within the slope. The main difficulties here come from the contact
between the saturated zone (the river) and the unsaturated slope
and from the high moisture contrast on the infiltration front. For
the building of the mesh we have used a fat node of 3 TB of shared
memory. The conditioning of the case (initial and boundary condi-
tions) has been performed using the ‘‘swak4foam’’ library.

A strong scaling exercise using from 16 cores (2 nodes) to 1024
cores (128 nodes) was performed for this case, and the results in
terms of speed up and parallel efficiency are shown in Fig. 6.

The elapsed computation time was about 1 h 15 mn with 16
cores (number of mesh cells per core: about 2.3 million) and be-
tween 1 and 2mnwith 1024 cores (number of mesh cells per core:
about 35 000). In order to assess the impact of I/O on parallel per-
formances of the solver, two strong scaling curves have been cre-
ated: one with written results for each day of rain, the ‘with I/O
case’, and one with written results only at the end of the 10 days

of rain, the ‘without I/O case’. Note that the amount of data to be
written in one single time step with I/O is roughly 2.5 GB. In the
‘with I/O case’, 10 computing time steps involved such I/O.

To compute the speed up and parallel efficiencywe use the total
elapsed computing time for each run. One can see that the speed up
is very good at up to 1024 cores. It is worth noting that the I/O op-
erations have an important impact on parallel performances only
for the highest number of cores: we have more than 90% parallel
efficiencywith 1024 coreswithout I/O,whilewe have just less than
80% of efficiency with I/O. In Section 4.4 we will focus on I/O anal-
ysis in order to identify some of the reasons for the loss in parallel
efficiency. Thus, in the case of massive parallel computations with
RichardsFOAM, the frequency of writing the current solution has
to be carefully chosen to avoid a collapse in the parallel efficiency.

4.3. Weak scaling

In order to evaluate the ability of RichardsFOAM to deal with
large scale problems, we performed a weak scaling study on cases
with similar features to those used for the strong scaling exercise,
apart from the soil depth (6 m for the weak scaling exercise)
and the boundary condition at the bottom of the slope (here zero
pressure). In this weak scaling study we considered a sequence of
problems with increasing sizes in terms of number of mesh cells,
and each element of this sequence was solvedwith an increasingly
important number of cores so that the number of mesh cells per
core stayed constant along the sequence (number ofmesh cells per
core: about 130 000). Fig. 7 shows the adopted method of building
the different cases associated with each element of the sequence.

From a parallel analysis point of view, this is a way to see
whether the ratio between computation and communication is
kept steady.

For this weak scaling exercise we considered two cases as well
as for the strong scaling exercise: a case with I/O, in which results
were written for all days of physical time, and a case without I/O,
in which results were written only at the end of the computation.
One should note that in this weak scaling exercise the whole pre-
processing procedure (mesh building, problemconditioning, initial
conditions setting) was done in parallel, without using a fat node
with a large amount of shared memory.

One can see the results of the weak scaling exercise in terms of
parallel efficiency in Fig. 8.

To compute the speed up and parallel efficiency, we again con-
sider the total elapsed computing time for each run. In aweak scal-
ing approach the speed up is ideally constant and equal to one. We
tried to determine whether time to solution was kept steady as we
increased the size of the problem and accordingly the number of
cores. A deviation from ideality lead to a speed up lower than one,
thus the speed up and the parallel efficiency are equal. This is why
we show only the parallel efficiency curves here. In order to illus-
trate the ability of RichardsFOAM to dealwith large scale problems,
we also show in Fig. 8 the physical surface of the slope for each
problem, and the associated mesh size. The computation times for
this weak scaling exercise were about 5 mn (for a physical time
of 10 days, as in the strong scaling study). Here, unlike the strong
scaling case, the amount of data to be written increased with the
number of cores involved (in fact with the size of the mesh used
for a given number of cores). The amount of data to be written in
one single time step in the ‘with I/O’ case was 0.7 GB for 64 cores (8
nodes), 2.8 GB for 256 cores (32 nodes) and 11.2 GB for 1024 cores
(128 nodes).

The performances were satisfactory in terms of parallel effi-
ciency, which remained over 90% even for the greatest number of
cores.We experienced the same trends as in strong scaling with an
I/O impact on parallel efficiency, that is, a drop to 80% in the largest
casewith 1024 processors. Taken together, the strong scaling study

and the weak scaling study show that RichardsFOAM may allow
a simulation to run on large space scales (km2) and time scales
(decades to century) with acceptable computation times.

4.4. Impact of data writing

In this section we analyse the reason of parallel efficiency drop
at high number of cores. In Fig. 9 we plot the computation times at
iteration level for the strong scaling exercise in the ‘with I/O’ case
for three different numbers of cores: 64, 256 and 1024 cores.

It can be seen on this graph that, in general, at the iteration
level the computation time is divided by approximately 4 when
the numbers of used cores are multiplied by 4. Small oscillations
occur in the computation times for a given number of used cores.
These small oscillations may be related to the production context
on the cluster (cf. Section 4.1). Communications between the cores
are slightly influenced by the surrounding flow of data associated
with the other jobs simultaneously running on the cluster. This is
most certainly true with large oscillations at the end of the 1024
cores case.

It can also be seen that, for each time step corresponding to the
I/O phase, there is a significant increase in the computation time,
especially for the high numbers of cores. Since these increases in
computation time are far more important than the oscillations ob-
served between the iterations with no writing phase, we strongly
suspect that the global drops of efficiency observed for a great
number of cores in the scaling studies (see Sections 4.2 and 4.3)
are mainly related to I/O effects. The question here was to deter-
mine whether this lack of performance was related more to appli-
cation algorithm than to the performance of the Lustre File system
(see Section 2.4). From the application algorithm point of view, the
important features for the subsequent analysis are as follows. At
a time step enduring the writing of data (I/O), after convergence,
each core is writing its own data fields corresponding to the un-
knowns of the underlying sub-mesh. Each core is writing its own
data in a specific file, thus each core is writing independently and
the amount of data is balanced by the balanced partitioning of the
mesh. This is an efficient way, at least from the algorithmic point
of view, to perform the global I/O in parallel and for a reasonable
amount of cores (nodes). One should note that the post-processing
of this data may require the reconstruction of one single object
from several data files.

We thus had to turn to file system consideration in order to try
to understand the drop in parallel efficiency with I/O. One must
bear in mind that we are dealing with a loaded global computing
system (for the period in which we ran simulations the average
global load of the cluster was above 80%). Hence the bandwidth
capacity of the file system cannot be fully available for our runs.
It is shared between all jobs currently running on the system and
potentially reading or writing.

A power outage gave us the opportunity to make some runs on
an empty system, whichmeans that the whole system (computing
resources and file system) was devoted to the runs. We therefore
reran some of the scaling tests shown in Sections 4.2 and 4.3 in
a computing system configuration where we were sure that the
entire capacity (i.e., bandwidth) of the file systemwas available for
our runs. Results are illustrated in Fig. 10.

In this graph, we focused on the last iteration with I/O in both
the strong andweak cases, andmore precisely on the overhead due
to writing data. We then calculated parallel efficiency classically,
by considering the run with 64 cores as the reference run, both
for the strong scaling and the weak scaling. It can be seen that we
had two different parallel behaviours corresponding to strong and
weak scaling cases. In the weak scaling case the parallel efficiency
was super-linear around 100%, whereas in the strong scaling
case, parallel efficiency dropped to 60% at 1024 cores. As these

Fig. 4. Data set used for the fitting exercise and comparison of numerical results and observations.

performance results are the best we can achieve on our computing
system, we can conclude that the lack of parallel performance
pointed out in Fig. 9 is due to production conditions during the
runs (a highly loaded computing system), because with a devoted
computing systemwe observed a good scalability for the iterations
with I/O operations, and not massive drops as with a computing
system in production. The different behaviours observed between
the strong scaling case and the weak scaling case can be explained
by the design of the Lustre file system. For the drop to 60% in strong
scaling, the observed behaviour can be related to the ratio between
the meta-data and the data for a given file. In the weak scaling
case this ratio is constant, whereas in the strong case it decreases
constantly. Overheaddue tomanagingmeta-data can thus be of the
same magnitude as writing data itself, which explains the lack of
parallel efficiency. On the other hand, for the slightly super-linear
behaviour, it can be seen that in addition to any bufferisation/cache

effects, an higher number of nodes (i.e., Lustre clients) may be
allowed to catch the full bandwidth of the Lustre file system, if the
global amount of data is above a threshold related to the tested
Lustre file system (cf. Section 2.4).

I/O issues play a significant role in the parallel performance of
applications in general, and more particularly for RichardsFOAM.
However, we showed that in some cases (weak scaling), the under-
lying capacity (bandwidth and parallelism) of the file system may
erase the negative impact of I/O on performance. In these cases, the
drop in parallel efficiency (illustrated in Section 4.3) is solely due
to the production context.

5. Conclusions and perspectives

In this work we developed a massively parallel open source
solver for Richards equation, the RichardsFOAM solver. The ad-

Fig. 5. Domain, boundary conditions and initial conditions for the strong scaling exercise (drawings not to scale).

Fig. 6. Speed up (a) and parallel efficiency (b) with and without I/O for the strong scaling exercise (computation times with 16 processors: about 1 h 15 mn; with 1024
processors: between 1 and 2 mn-mesh size: about 36 million cells).

vantage of building such a solver within a generalist open source
CFD platform such as OpenFOAM R© is that it allows easy collabo-
rative testing and improvement by large groups of developers, and
can benefit from the various developments in numerical tools de-
veloped by the OpenFOAM R© community, which embraces a wide
range of aspects of computational continuum mechanics. Valida-
tion cases have been proposed and application to a real data set
acquired in a region with a monsoon climate illustrated the abil-
ity of RichardsFOAM to deal with strongly varying hydrological

conditions. The solver has demonstrated state of the art parallel
performance, both for strong and weak scaling. The conditions for
obtaining such performances have been discussed, and one of the
important points identified is the good handling of I/O operations,
consisting in (i) minimal writing and (ii) using an adequate file sys-
tem. This I/O-related loss of scalability has been shown as mainly
due to the production context of the cluster used rather than to the
implementation of RichardsFOAM itself or of the OpenFOAM R© tool
box.

Fig. 7. Considered cases for the weak scaling exercise.

Although the field of applications for amassively parallel solver
for Richards equation is broad (environmental engineering, water
resources management, etc.), RichardsFOAM was primarily devel-
oped in order to provide a quantitative and predictive tool to give
relevant hydrological input data to continental weathering mod-
elling (for instance, [1,88]). The parallel performances of Richards-
FOAM will allow, in the near future, application to decades to
century time scale modelling of water fluxes in the critical zone
of experimental watersheds with surfaces of a few square kilome-
tres, in order to study the impact of global changes on weathering
processes. Many experimental watersheds in this range of scales
are currently monitored in order to study weathering processes:
for instance in a tropical climatic context such as the Mule Hole
watershed (South India, 4.3 km2 of surface [89]), Maddur water-
shed (South India, 7.2 km2 of surface [90]) or Nsimi watershed
(Cameroun, 1.1 km2 of surface [91]). In boreal climatic contexts,
catchments at the corresponding spatial scale are alsomonitored in
Central Siberia (Kulingdakan watershed, 12 km2 of surface;
e.g.: [92]) and thus should also be the subject of studies with the
developed tool, for example to characterize water processes dur-
ing the summer season. Such applications of RichardsFOAM on ex-
perimental watersheds will be the scope of future works devoted
to the modelling of water fluxes on continental surfaces. Further
tests of the computational performance of the open source parallel
RichardsFOAMsolvermaydealwith new test problemswith highly
non-linear and highly spatially correlated heterogeneous unsatu-
rated flow problems in one and several dimensions. This will allow
testing the overall performance of the numerical solver (combining
assessments of parallelization efficiency, Picard iterations, number
of time steps, etc.).

Finally, the good parallel performances obtainedwith Richards-
FOAM illustrate the benefit of developing a more complete tool for
modelling transfers (of surface waters as well as of subsurface wa-
ters, of solutes, of energy) in continental surfaces in the framework
of OpenFOAM R©. This will be the subject of future works devoted
to the set up of mechanistic modelling of hydrogeochemical pro-
cesses at the watershed scale.

Acknowledgements

We are grateful to two anonymous reviewers for their helpful
and constructive comments. This work was supported by a Paul
Sabatier University starting grant. Partial support from BIO-GEO-
CLIM grant No 14.B25.31.0001 is also acknowledged.

Finally we would like to thank the whole team of the CALMIP
cluster.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.cpc.2014.08.004.

Fig. 8. Weak scaling study results and features: parallel efficiencies (a), modelled
surfaces (b) and mesh sizes (c). Average computation times: 5 mn for a physical
time of 10 days.

Fig. 9. Computation times by time increment for the strong scaling exercise with
I/O.

Fig. 10. Parallel efficiency of I/O in the last iteration of the computations donewith
a dedicated Lustre file system.

References

[1] Y. Goddéris, S.L. Brantley, L.M. François, J. Schott, D. Pollard, M. Déqué,
Biogeosci. Discuss. 9 (2012) 10847.

[2] J.C.G. Walker, P.B. Hays, J.F. Kasting, J. Geophys. Res. 86 (1981) 9776.
[3] Q. Li, A.J.A. Unger, E.A. Sudicky, D. Kassenaar, E.J. Wexler, S. Shikaze, J. Hydrol.

357 (2008) 317.
[4] G.-T. Yeh, D.-S. Shih, J.-R.C. Cheng, Comput. Fluids 45 (2011) 2.
[5] C.T. Miller, C.N. Dawson, M.W. Farthing, T.Y. Hou, J. Huang, C. Kees, C.T. Kelley,

H.P. Langtangen, Adv. Water Resour. 51 (2013) 405.
[6] L.A. Richards, Physics 1 (1931) 318.
[7] M. Muskat, Physical Principles of Oil Production, McGraw-Hill, New York,

1949, p. 922.
[8] S. Whitaker, Transp. Porous Med. 1 (1986) 105.
[9] M. Quintard, S. Whitaker, Transp. Porous Med. 5 (1990) 341.

[10] S.M. Hassanizadeh, W.G. Gray, in: J.P.D. Plessis (Ed.), Fluid Transport in Porous
Media, Computational Mechanics Publications, 1997, p. 105.

[11] R. Hilfer, Phys. Rev. E 58 (1998) 2090.
[12] M. Panfilov, I. Panfilova, Transp. Porous Med. 58 (2005) 87.
[13] L. Cueto-Felgueroso, R. Juanes, Water Resour. Res. 45 (2009) W10409.

http://dx.doi.org/10.1029/2009WR007945.
[14] W. Wang, J. Rutqvist, U.-J. Görke, J.T. Birkholzer, O. Kolditz, Environ. Earth Sci.

62 (2011) 1197.
[15] M.-S. Chiang, H.-S. Chu, J. Power Sources 160 (2006) 340.
[16] S.A. Galindo-Torres, A. Scheuermann, L. Li, D.M. Pedroso, D.J. Williams,

Comput. Phys. Comm. 184 (2013) 1086.
[17] R. Ababou, A.C. Bagtzoglou, BIGFLOW: A Numerical Code for Simulating

Flow in Variably Saturated, Heterogeneous Geologic Media (Theory and
User’s Manual, Version 1.1). Report NUREG/CR-6028, U.S. Nuclear Regulatory
Commission (Government Printing Office, Washington D.C., U.S.A., 1993)
http://www.osti.gov/bridge/servlets/purl/10168217-yoTsuT/10168217.pdf.

[18] G. Gottardi, M. Venutelli, Comput. Geosci. 19 (9) (1993) 1239.
[19] R.H. Brooks, A.T. Corey, Hydraulic Properties of Porous Media. Hydrology

Papers, Colorado State University, Fort Collins, Hydrology Paper No.3, March
1964.

[20] M.Th. van Genuchten, Soil Sci. Soc. Am. J. 44 (5) (1980) 892.
[21] Y. Mualem, Water Resour. Res. 12 (3) (1976) 513.
[22] J. Santos, Y. Efendiev, L. Guarracino, Comput. Methods Appl. Mech. Engrg. 196

(2006) 161.
[23] M. Bakker, M.W. Farthing, C.S. Woodward, Adv.Water Resour. 34 (2011) 1059.
[24] D.J. Polmann, D. McLaughlin, L.W. Gelhar, R. Ababou,Water Resour. Res. 27 (7)

(1991) 1447.
[25] R. Ababou, S. Sagar, G. Wittmeyer, Adv. Water Resour. 15 (1992) 181.
[26] C. Paniconi, E.F. Wood, Water Resour. Res. 29 (6) (1993) 1601.
[27] J. Šimůnek, K. Huang, M.Th. van Genuchten, The HYDRUS Code for Simulating

the One-Dimensional Movement of Water, Heat, and Multiple Solutes in
Variably-Saturated Media. Version 6.0, Research Report No. 144, U.S. Salinity
Laboratory, USDA (ARS, Riverside, California), 1998.

[28] J. Šimůnek, M.Th. van Genuchten, M. Šejna, Vadose Zone J. 7 (2) (2008) 587.
[29] K.U. Mayer, E.O. Frind, D.W. Blowes, Water Resour. Res. 38 (9) (2002) 1174.
[30] S. Weill, E. Mouche, J. Patin, J. Hydrol. 366 (2009) 9.
[31] M. Camporese, C. Paniconi, M. Putti, S. Orlandini, Water Resour. Res. 46 (2)

(2010) http://dx.doi.org/10.1029/2008WR007536.
[32] M. Kuznetsov, A. Yakirevich, Y.A. Pachepsky, S. Sorek, N. Weisbrod,

J. Hydrol. 450–451 (2012) 140.
[33] I. Borsi, R. Rossetto, C. Schifani, M. Hill, J. Hydrol. (2013) http://dx.doi.org/10.

1016/j.jhydrol.2013.02.020.
[34] R. Ababou, L.W. Gelhar, C. Hempel, Syst. Cray Channels 1992 (22–25) (1992).
[35] F.T. Tracy, Accuracy and Performance Testing of Three-Dimensional Unsatu-

rated Flow Finite Element Groundwater Programs on the Cray XT3 Using An-
alytical Solutions. HPCMP Users Group Conference (HPCMP-UGC’06), 2006.

[36] D. Coumou, S. Matthaï, S. Geiger, T. Driesner., Comput. Geosci. 34 (2008) 1697.
[37] M. Herbst, S. Gottschalk, M. Reißel, H. Hardelauf, R. Kasteel, M. Javaux,

J. Vanderborght, H. Vereecken, Comput. Geosci. 34 (2008) 1958.
[38] W. Wang, G. Kosakowski, O. Kolditz, Comput. Geosci. 35 (2009) 1631.

[39] G. Tang, E.F. D’Avezedo, F. Zhang, J.C. Parker, D.B.Watson, P.M. Jardine, Comput.
Geosci. 36 (2010) 1451.

[40] L. Warsta, T. Karvonen, H. Koivusalo, M. Paasonen-Kivekäs, A. Taskinen,
J. Hydrol. 476 (2013) 395.

[41] H. Hardelauf, M. Javaux, M. Herbst, S. Gottschalk, R. Kasteel, J. Vanderborght,
H. Vereecken, Vadose Zone J. 6 (2) (2007) 255.

[42] K. Zhang, Y. Wu, K. Pruess, User’s Guide for TOUGH2-MP – A Massively
Parallel Version of the TOUGH2 code. LBNL-315E. Lawrence Berkeley National
Laboratory, Berkeley, CA, USA, 2008.

[43] G.E. Hammond, P.C. Lichtner, M.L. Rockhold, J. Contam. Hydrol. 120–121
(2011) 115.

[44] M. Williamson, J. Meza, D. Moulton, I. Gorton, M. Freshley, P. Dixon, R. Seitz,
C. Steefel, S. Finsterle, S. Hubbard, M. Zhu, K. Gerdes, R. Patterson, Y.T. Collazo,
Tech. Innov. 13 (2) (2011) 175.

[45] O. Kolditz, S. Bauer, L. Bilke, N. Böttcher, J.O. Delfs, T. Fischer, U.J. Görke,
T. Kalbacher, G. Kosakowski, C.I.McDermott, C.H. Park, F. Radu, K. Rink, H. Shao,
H.B. Shao, F. Sun, Y.Y. Sun, A.K. Singh, J. Taron, M. Walther, W. Wang,
N. Watanabe, Wu Y, Xie M, Xu W, B. Zehner, Environ. Earth Sci. 67 (2) (2012)
589.

[46] C. Lichtner, E. Hammond, Vadose Zone J. (2012) http://dx.doi.org/10.2136/
vzj2011.0097.

[47] R.M. Maxwell, Adv. Water Resour. 53 (2013) 109.
[48] H. Jasak, Error analysis and estimation for the finite volume method

with applications to fluid flows (Ph.D. thesis), Imperial College of Science,
Technology and Medicine, London, 1996.

[49] H.G. Weller, G. Tabor, J. Jasak, C. Fureby, Comput. Phys. 12 (6) (1998) 620.
[50] http://www.openfoam.com.
[51] R. Eymard, M. Gutnic, D. Hilhorst, Comput. Geosci. 3 (1999) 259.
[52] I. Rees, I.Masters, A.G.Malan, R.W. Lewis, Comput.Methods Appl.Mech. Engrg.

193 (2004) 4741.
[53] V. Novaresio, M. García-Camprubí, S. Izquierdo, P. Asinari, N. Fueyo, Comput.

Phys. Comm. 183 (2012) 125.
[54] M.Mortensen,H.P. Langtangen, G.N.Wells, Adv.Water Resour. 34 (2011) 1082.
[55] J.F. Wellmann, A. Croucher, K. Regenauer-Lieb, Comput. Geosci. 43 (2012) 197.
[56] M.J. Blunt, B. Bijeljic, H. Dong, O. Gharbi, S. Iglauer, P. Mostaghimi, A. Paluszny,

C. Pentland, Adv. Water Resour. 51 (2013) 197.
[57] D.J. Furbish, M.V. Scmeeckle, Water Resour. Res. 49 (3) (2013) 1537.
[58] I.A. Cosden, J.R. Lukes, Comput. Phys. Comm. 184 (2013) 1958.
[59] F. Lehmann, P.H. Ackerer, Transp. Porous Med. 31 (1998) 275.
[60] H. An, Y. Ichikawa, Y. Tachikawa, M. Shiiba, J. Hydrol. 470–471 (2012) 212.
[61] P.A. Lott, H.F.Walker, C.S.Woodward, U.M. Yang, Adv.Water Resour. 38 (2012)

92.
[62] G.E. Hammond, A.J. Valocchi, P.C. Lichtner, Adv. Water Resour. 28 (2005) 359.
[63] C. Paniconi, M. Putti, Water Resour. Res. 30 (12) (1994) 3357.
[64] S. Mehl, Groundwater 44 (4) (2006) 583.
[65] P. Galvao, P. Chambel Leitao, R. Neves, P. Chambel Leitao, Dev. Water Sci. 55

(1) (2004) 557.
[66] M.A. Celia, E.T. Bouloutas, R.L. Zarba, Water Resour. Res. 26 (7) (1990) 1483.
[67] C. Paniconi, A.A. Aldama, E.F. Wood, Water Resour. Res. 27 (6) (1991) 1147.
[68] S.H. Ju, K.-J.S. Kung, Comput. Geosci. 23 (2) (1997) 175.
[69] H.J. Lin, D.R. Richards, C.A. Talbot, G.T. Yeh, J.R. Cheng, H.P. Cheng,

N.L. Jones, FEMWATER: A Three-Dimensional Finite Element Computer
Model for Simulating Density-Dependent Flow and Transport in Variably
SaturatedMedia. Technical Report CHL-97-12, USArmyEngineer Research and
Development Center (ERDC), Vicksburg, MS, 1997.

[70] J.E. Jones, C.S. Woodward, Adv. Water Resour. 24 (2001) 763.
[71] T.J.R. Hugues, I. Levit, J. Winget, Comput. Methods Appl. Mech. Engrg. 36 (2)

(1983) 241.
[72] M.F. Wheeler, M. Peszyńska, Adv. Water Resour. 25 (2002) 1147.
[73] R. Ababou, D. McLaughlin, L.W. Gelhar, A.F.B Tompson, Transp. Porous Med. 4

(1989) 549.
[74] J.C. van Dam, R.A. Feddees, J. Hydrol. 233 (2000) 72.
[75] H. Li, M.W. Farthing, C.T. Miller, Adv. Water Resour. 30 (2007) 1883.
[76] K. Rathfelder, L.M. Abriola, Water Resour. Res. 30 (1994) 3357.
[77] K. Kosugi, Vadose Zone J. 7 (2008) 957.
[78] G.A. Williams, C.T. Miller, Adv. Water Resour. 22 (8) (1999) 831.
[79] D. Kavetski, P. Binning, S.W. Sloan, Adv. Water Res. 24 (2001) 595.
[80] K.E. Brenan, S.L. Campbell, L.R. Petzold, The Numerical Solution of Initial Value

Problems in Differential-Algebraic Equations, in: SIAM Frontiers in Applied
Mathematics, vol. 16, SIAM, Philadelphia, PA, 1996.

[81] B. Belfort, J. Carrayrou, F. Lehmann, Transp. Porous Med. 69 (2007) 123.
[82] S.E. Gasda, M.W. Farthing, C.E. Kees, C.T. Miller, Adv. Water Resour. 34 (2011)

1268.
[83] J. Carrayrou, J. Hoffmann, P. Knabner, S. Kräutle, C. De Dieuleveult, J. Erhel,

J. Van der Lee, V. Lagneau, K. Ulrich, K.T.B. MacQuarrie, Comput. Geosci. 14
(2010) 483.

[84] B. Hendrickson, Appl. Math. Model. 25 (2) (2000) 99.
[85] C.E. Kees, M.W. Farthing, C.N. Dawson, Comput. Methods Appl. Mech. Engrg.

197 (2008) 4610.
[86] S.K. Tomer, Soil moisturemodelling, retrieval frommicrowave remote sensing

and assimilation in a tropical watershed (Ph.D. thesis), Faculty of Engineering
of the Indian Institute of Science, Bangalore, 2012.

[87] openfoamwiki.net/index.php/Contrib/groovyBC.
[88] Y. Goddéris, L.M. François, A. Probst, J. Schott, D.Moncoulon, D. Labat, D. Viville,

Geochim. Cosmochim. Acta 70 (2006) 1128.

[89] J.-J. Braun, M. Descloitres, J. Riotte, S. Fleury, L. Barbiéro, J.-L. Boeglin,
A. Violette, E. Lacarce, L. Ruiz, M. Sekhar, M.S. Mohan Kumar, S. Subramanian,
B. Dupré, Geochim. Cosmochim. Acta 73 (2009) 935.

[90] S. Kumar, M. Sekhar, S. Bandyopadhyay, Curr. Sci. India 97 (8) (2009) 1196.
[91] M. Sekhar, J.-J. Braun, K.V. HayagreevaRao, L. Ruiz, H. Robain, J. Viers, J.R. Ndam,

B. Dupré, South Cameroun. Environ. Geol. 54 (2008) 831.
[92] M.-L. Bagard, F. Chabaux, O.S. Pokrovsky, J. Viers, A.S. Prokushkin, P. Stille,

S. Rihs, A.-D. Schmitt, B. Dupré, Geochim. Cosmochim. Acta 75 (2011) 3335.

[93] W.R. Gardner, Soil Sci. 85 (1958) 228 ([93] quoted in the electronic
supplementary material).

[94] A.C. Bagtzoglou, G.W. Wittmeyer, R. Ababou, B. Sagar, Proc. Comput. Methods
Water Resour. (1992) 695 ([94] quoted in the electronic supplementary
material).

[95] G. Martinez, Y.A. Pachepsky, H. Vereecken, H. Hardelauf, M. Herbst,
K. Vanderlinden, J. Hydrol. 481 (2013) 106 ([95] quoted in the electronic
supplementary material).

