49 research outputs found

    Diagnostic trials: a field guide

    Get PDF
    The Diagnostic Trials, conducted in Kenya, Malawi, Mali, Nigeria, and Tanzania, constitute a major part of Africa Soil Information Service agronomic activities. This guide provides a standard tool that is part of a structured approach for the diagnosis of soil health related constraints to crop production. It is intended for use by national and international agricultural research systems, development partners and extension services to ensure standard procedures in data collection that will feed to an Africa-wide database of diagnostic trials, allowing an increase in data density over time and an improvement of the reliability in the assessment of soil constraints and inferences

    Epstein-Barr Virus (EBV) detection and typing by PCR: a contribution to diagnostic screening of EBV-positive Burkitt's lymphoma

    Get PDF
    BACKGROUND: Epstein-Barr virus (EBV) is associated to the etio-pathogenesis of an increasing number of tumors. Detection of EBV in pathology samples is relevant since its high prevalence in some cancers makes the virus a promising target of specific therapies. RNA in situ hybridization (RISH) is the standard diagnostic procedure, while polymerase chain reaction (PCR)-based methods are used for strain (EBV type-1 or 2) distinction. We performed a systematic comparison between RISH and PCR for EBV detection, in a group of childhood B-cell Non-Hodgkin lymphomas (NHL), aiming to validate PCR as a first, rapid method for the diagnosis of EBV-associated B-cell NHL. METHODS: EBV infection was investigated in formalin fixed paraffin-embedded tumor samples of 41 children with B-cell NHL, including 35 Burkitt's lymphoma (BL), from Rio de Janeiro, Brazil, by in situ hybridization of EBV-encoded small RNA (EBER-RISH) and PCR assays based on EBNA2 amplification. RESULTS: EBV genomes were detected in 68% of all NHL. Type 1 and 2 accounted for 80% and 20% of EBV infection, respectively. PCR and RISH were highly concordant (95%), as well as single- and nested-PCR results, allowing the use of a single PCR round for diagnostic purposes. PCR assays showed a sensitivity and specificity of 96% and 100%, respectively, with a detection level of 1 EBV genome in 5,000–10,000 EBV-negative cells, excluding the possibility of detecting low-number EBV-bearing memory cells. CONCLUSION: We describe adequate PCR conditions with similar sensitivity and reliability to RISH, to be used for EBV diagnostic screening in high grade B-NHL, in "at risk" geographic regions

    Constitutive RB1 mutation in a child conceived by in vitro fertilization: implications for genetic counseling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to identify mutations associated with bilateral retinoblastoma in a quadruplet conceived by in vitro fertilization, and to trace the parental origin of mutations in the four quadruplets and their father.</p> <p>Methods</p> <p>Mutational screening was carried out by sequencing. Genotyping was carried out for determining quadruplet zygosity.</p> <p>Results</p> <p>The proband was a carrier of a novel <it>RB1</it> constitutive mutation (g.2056C>G) which was not detected in her father or her unaffected sisters, and of two other mutations (g.39606 C>T and g.174351T>A) also present in two monozygotic sisters. The novel mutation probably occurred de novo while the others were of likely maternal origin. The novel mutation, affecting the Kozak consensus at the 5'UTR of <it>RB1</it> and g.174351T>A were likely associated to retinoblastoma in the proband.</p> <p>Conclusion</p> <p>Molecular diagnosis of retinoblastoma requires genotypic data of the family for determining hereditary transmission. In the case of children generated by IVF with oocytes from an anonymous donor which had been stored in a cell repository, this might not be successfully accomplished, making precise diagnosis impracticable for genetic counseling.</p

    Detailed analysis of X chromosome inactivation in a 49,XXXXX pentasomy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pentasomy X (49,XXXXX) has been associated with a severe clinical condition, presumably resulting from failure or disruption of X chromosome inactivation. Here we report that some human X chromosomes from a patient with 49,XXXXX pentasomy were functionally active following isolation in inter-specific (human-rodent) cell hybrids. A comparison with cytogenetic and molecular findings provided evidence that more than one active X chromosome was likely to be present in the cells of this patient, accounting for her abnormal phenotype.</p> <p>Results</p> <p>5-bromodeoxyuridine (BrdU)-pulsed cultures showed different patterns among late replicating X chromosomes suggesting that their replication was asynchronic and likely to result in irregular inactivation. Genotyping of the proband and her mother identified four maternal and one paternal X chromosomes in the proband. It also identified the paternal X chromosome haplotype (P), indicating that origin of this X pentasomy resulted from two maternal, meiotic non-disjunctions. Analysis of the <it>HUMANDREC </it>region of the androgen receptor (<it>AR</it>) gene in the patient's mother showed a skewed inactivation pattern, while a similar analysis in the proband showed an active paternal X chromosome and preferentially inactivated X chromosomes carrying the 173 <it>AR </it>allele. Analyses of 33 cell hybrid cell lines selected in medium containing hypoxanthine, aminopterin and thymidine (HAT) allowed for the identification of three maternal X haplotypes (M1, M2 and MR) and showed that X chromosomes with the M1, M2 and P haplotypes were functionally active. In 27 cell hybrids in which more than one X haplotype were detected, analysis of X inactivation patterns provided evidence of preferential inactivation.</p> <p>Conclusion</p> <p>Our findings indicated that 12% of X chromosomes with the M1 haplotype, 43.5% of X chromosomes with the M2 haplotype, and 100% of the paternal X chromosome (with the P haplotype) were likely to be functionally active in the proband's cells, a finding indicating that disruption of X inactivation was associated to her severe phenotype.</p

    Disease-associated mitochondrial mutations and the evolution of primate mitogenomes

    No full text
    <div><p>Several human diseases have been associated with mutations in mitochondrial genes comprising a set of confirmed and reported mutations according to the MITOMAP database. An analysis of complete mitogenomes across 139 primate species showed that most confirmed disease-associated mutations occurred in aligned codon positions and gene regions under strong purifying selection resulting in a strong evolutionary conservation. Only two confirmed variants (7.1%), coding for the same amino acids accounting for severe human diseases, were identified without apparent pathogenicity in non-human primates, like the closely related Bornean orangutan. Conversely, reported disease-associated mutations were not especially concentrated in conserved codon positions, and a large fraction of them occurred in highly variable ones. Additionally, 88 (45.8%) of reported mutations showed similar variants in several non-human primates and some of them have been present in extinct species of the genus <i>Homo</i>. Considering that recurrent mutations leading to persistent variants throughout the evolutionary diversification of primates are less likely to be severely damaging to fitness, we suggest that these 88 mutations are less likely to be pathogenic. Conversely, 69 (35.9%) of reported disease-associated mutations occurred in extremely conserved aligned codon positions which makes them more likely to damage the primate mitochondrial physiology.</p></div

    Gene size, genetic distance and codons under negative selection.

    No full text
    <p>(A) Significant, positive correlation between mitochondrial gene size and mean GTR+Γ+I distance (r<sup>2</sup> = 0. 461; p = 0.011). (B) Non-significant, negative correlation between gene size and percentage of codons under negative selection (r<sup>2</sup> = 0.136; p = 0.214).</p
    corecore