34 research outputs found

    Evaluation of autohydrolysis pretreatment using microwave heating for enzymatic saccharification of corn residues

    Get PDF
    Pretreatment of lignocellulosic materials (LCMs) is one of the most critical stages in the production of 2G bioethanol, this stage allows to maximize the production of fermentable sugars in the enzymatic saccharification process (ESP). Recently the microwave heating (MH) have been studied for enhanced the LCMs pretreatment, this technology reduces the energy requirements in the process, due to the fast heat transfer and it has allowed to redefine a lot of reactions which the thermal factor plays an essential role in the process. In this work were evaluated the effects of autohydrolysis pretreatment from corn residues using microwave heating and the pretreated solids as substrate in the enzymatic saccharification. The autohydrolysis pretreatment was performed using water as catalyst, the time (10, 30 and 50) and temperature (160, 180 and 200 ºC) were evaluated and the pretreated solids were used in the ESP. The enzymatic saccharification were performed with a working volume of 50 mL, 50 mM citrate buffer (pH 4.8), 2% (w/v) sodium with a cellulose concentration of 1 % (w/v) and incubated at 50 °C. The CellicCTec2 - cellulase was used with a loading of 20 FPU/g. This work showed that microwave autohydrolysis processing is an efficient pretreatment producing a solid enriched with cellulose (63.67±0.91) . The solid pretreated at 200 °C for 10 min was the best condition for saccharification yield (96.95% ± 0.79). This autohydrolysis pretreatment using microwave heating and enzymatic saccharification is a good alternative to obtain fermentable sugars for bioethanol production

    Microwave heating processing as alternative of pretreatment in second-generation biorefinery: An overview

    Get PDF
    The development of a feasible biorefinery is in need of alternative technologies to improve lignocellulosic biomass conversion by the suitable use of energy. Microwave heating processing (MHP) is emerging as promising unconventional pretreatment of lignocellulosic materials (LCMs). MHP applied as pretreatment induces LCMs breakdown through the molecular collision caused by the dielectric polarization. Polar particles movement generates a quick heating consequently the temperatures and times of process are lower. In this way, MHP has positioned as green technology in comparison with other types of heating. Microwave technology represents an excellent option to obtain susceptible substrates to enzymatic saccharification and subsequently in the production of bioethanol and high-added compounds. However, it is still necessary to study the dielectric properties of materials, and conduct economic studies to achieve development in pilot and industrial scale. This work aims to provide an overview of recent progress and alternative configurations for combining the application of microwave technology on the pretreatment of LCMs in terms of biorefinery.Financial support is gratefully acknowledged from the Energy Sustainability Fund 2014-05 (CONACYT-SENER), Mexican Centre for Innovation in Bioenergy (Cemie-Bio), Cluster of Bioalcohols (Ref. 249564). This study was supported by the Secretary of Public Education of Mexico PROMEP project/103.5/13/6595 – UACOAH-PTC-292 and PROMEP project/DSA/103.5/14/10442 – UACOAH-PTC-312. We gratefully acknowledge support for this research by the Mexican Science and Technology Council (CONACYT, Mexico) for the infrastructure project - INFR201601 (Ref. 269461) and CB-2015-01 (Ref. 254808). The author A. Aguilar-Reynosa thanks to Mexican Science and Technology Council (CONACY, Mexico) for master fellowship support

    Production of mexican brown macroalgae fucoidan and fucosidases under an integral green technology bioproceses by the biorefinery concept

    Get PDF
    Marine ecosystem can be considered a rather exploited source of natural substances with enormous bioactive potential. In Mexico macro-algae study remain forgotten for research and economic purposes besides the high amount of this resource along the west and east coast. For that reason the Bioferinery Group of the Autonomous University of Coahuila, have been studying the biorefinery concept in order to recover high value byproducts of Mexican brown macro-algae including polysaccharides and enzymes to be applied in food, pharmaceutical and energy industry. Brown macroalgae are an important source of fucoidan, alginate and laminarin which comprise a complex group of macromolecules with a wide range of important biological properties such as anticoagulant, antioxidant, antitumoral and antiviral and also as rich source of fermentable sugars for enzymes production. Additionally, specific enzymes able to degrade algae matrix (fucosidases, sulfatases, aliginases, etc) are important tools to establish structural characteristics and biological functions of these polysaccharides. The aims of the present work were the integral study of bioprocess for macroalgae biomass exploitation by the use of green technologies as hydrothermal extraction and solid state fermentation in order to produce polysaccharides and enzymes (fucoidan and fucoidan hydrolytic enzymes). This work comprises the use of the different bioprocess phases in order to produce high value products with lower time and wastes

    Microalgal biomass pretreatment for bioethanol production: a review

    Get PDF
    Biofuels derived from microalgae biomass have received a great deal of attention owing to their high potentials as sustainable alternatives to fossil fuels. Microalgae have a high capacity of CO2 fixation and depending on their growth conditions, they can accumulate different quantities of lipids, proteins, and carbohydrates. Microalgal biomass can, therefore, represent a rich source of fermentable sugars for third generation bioethanol production. The utilization of microalgal carbohydrates for bioethanol production follows three main stages: i) pretreatment, ii) saccharification, and iii) fermentation. One of the most important stages is the pretreatment, which is carried out to increase the accessibility to intracellular sugars, and thus plays an important role in improving the overall efficiency of the bioethanol production process. Diverse types of pretreatments are currently used including chemical, thermal, mechanical, biological, and their combinations, which can promote cell disruption, facilitate extraction, and result in the modification the structure of carbohydrates as well as the production of fermentable sugars. In this review, the different pretreatments used on microalgae biomass for bioethanol production are presented and discussed. Moreover, the methods used for starch and total carbohydrates quantification in microalgae biomass are also briefly presented and compared.CONACYT -Consejo Nacional de Ciencia y Tecnologíainfo:eu-repo/semantics/publishedVersio

    J-PLUS: A wide-field multi-band study of the M15 globular cluster. Evidence of multiple stellar populations in the RGB

    Full text link
    The Javalambre Photometric Local Universe Survey (J-PLUS) provides wide field-of-view images in 12 narrow, intermediate and broad-band filters optimized for stellar photometry. Here we have applied J-PLUS data for the first time for the study of Galactic GCs using science verification data obtained for the very metal-poor GC M\,15. Our J-PLUS data provide low-resolution spectral energy distributions covering the near-UV to the near-IR, allowing us to search for MPs based on pseudo-spectral fitting diagnostics. J-PLUS CMDs are found to be particularly useful to search for splits in the sequences formed by the upper red giant branch (RGB) and asymptotic giant branch (AGB) stars. We interpret these split sequences as evidence for the presence of MPs. This demonstrates that the J-PLUS survey will have sufficient spatial coverage and spectral resolution to perform a large statistical study of GCs through multi-band photometry in the coming years.Comment: 11 pages, 11 figures. Accepted for publication @ A&

    Dissecting quasars with the J-PAS narrow-band photometric survey

    Get PDF
    Nuclear Activity in Galaxies Across Cosmic Time, Proceedings of the conference held 7-11 October 2019 in Addis Ababa, Ethiopia. Edited by Mirjana Pović et al. Proceedings of the International Astronomical Union, Volume 356, pp. 12-16The J-PAS survey will soon start observing thousands of square degrees of the Northern Sky with its unique set of 56 narrow band filters covering the entire optical wavelength range, providing, effectively, a low resolution spectra for every object detected. Active galaxies and quasars, thanks to their strong emission lines, can be easily identified and characterized with J-PAS data. A variety of studies can be performed, from IFU-like analysis of local AGN, to clustering of high-z quasars. We also expect to be able to extract intrinsic physical quasar properties from the J-PAS pseudo-spectra, including continuum slope and emission line luminosities. Here we show the first attempts of using the QSFit software package to derive the properties for 22 quasars at 0.8 < z < 2 observed by the miniJPAS survey, the first deg2 of J-PAS data obtained with an interim camera. Results are compared with the ones obtained by applying the same software to SDSS quasar spectra.Financial support from the State Agency for Research of the Spanish MCIU through the "Center of Excellence Severo Ochoa" award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709

    J-PAS: Forecasts for dark matter - dark energy elastic couplings

    Full text link
    We consider a cosmological model where dark matter and dark energy feature a coupling that only affects their momentum transfer in the corresponding Euler equations. We perform a fit to cosmological observables and confirm previous findings within these scenarios that favour the presence of a coupling at more than 3σ3\sigma. This improvement is driven by the Sunyaev-Zeldovich data. We subsequently perform a forecast for future J-PAS data and find that clustering measurements will permit to clearly discern the presence of an interaction within a few percent level with the uncoupled case at more than 10σ10\sigma when the complete survey, covering 85008500 sq. deg., is considered. We found that the inclusion of weak lensing measurements will not help to further constrain the coupling parameter. For completeness, we compare to forecasts for DESI and Euclid, which provide similar discriminating power.Comment: 34 pages, 17 figures, added some clarifications and discussions, matches published versio

    Global Distribution of Human-Associated Fecal Genetic Markers in Reference Samples from Six Continents

    Get PDF
    Numerous bacterial genetic markers are available for the molecular detection of human sources of fecal pollution in environmental waters. However, widespread application is hindered by a lack of knowledge regarding geographical stability, limiting implementation to a small number of well-characterized regions. This study investigates the geographic distribution of five human-associated genetic markers (HF183/BFDrev, HF183/BacR287, BacHum-UCD, BacH, and Lachno2) in municipal wastewaters (raw and treated) from 29 urban and rural wastewater treatment plants (750-4»400»000 population equivalents) from 13 countries spanning six continents. In addition, genetic markers were tested against 280 human and nonhuman fecal samples from domesticated, agricultural and wild animal sources. Findings revealed that all genetic markers are present in consistently high concentrations in raw (median log10 7.2-8.0 marker equivalents (ME) 100 mL-1) and biologically treated wastewater samples (median log10 4.6-6.0 ME 100 mL-1) regardless of location and population. The false positive rates of the various markers in nonhuman fecal samples ranged from 5% to 47%. Results suggest that several genetic markers have considerable potential for measuring human-associated contamination in polluted environmental waters. This will be helpful in water quality monitoring, pollution modeling and health risk assessment (as demonstrated by QMRAcatch) to guide target-oriented water safety management across the globe.Fil: Mayer, René E.. Vienna University of Technology; Austria. Interuniversity Cooperation Centre for Water and Health; AustriaFil: Reischer, Georg. Vienna University of Technology; AustriaFil: Ixenmaier, Simone K.. Vienna University of Technology; Austria. Interuniversity Cooperation Centre for Water and Health; AustriaFil: Derx, Julia. Vienna University of Technology; AustriaFil: Blaschke, Alfred Paul. Vienna University of Technology; AustriaFil: Ebdon, James E.. University of Brighton; Reino UnidoFil: Linke, Rita. Vienna University of Technology; Austria. Interuniversity Cooperation Centre Water And Health; AustriaFil: Egle, Lukas. Vienna University of Technology; AustriaFil: Ahmed, Warish. Csiro Land And Water; AustraliaFil: Blanch, Anicet R.. Universidad de Barcelona; EspañaFil: Byamukama, Denis. Makerere University; UgandaFil: Savill, Marion. Affordable Water Limited;Fil: Mushi, Douglas. Sokoine University Of Agriculture; TanzaniaFil: Cristobal, Hector Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; ArgentinaFil: Edge, Thomas A.. Canada Centre for Inland Waters. Environment and Climate Change Canada; CanadáFil: Schade, Margit A.. Bavarian Environment Agency; AlemaniaFil: Aslan, Asli. Georgia Southern University; Estados UnidosFil: Brooks, Yolanda M.. Michigan State University; Estados UnidosFil: Sommer, Regina. Interuniversity Cooperation Centre Water And Health; Austria. Medizinische Universitat Wien; AustriaFil: Masago, Yoshifumi. Tohoku University; JapónFil: Sato, Maria I.. Cia. Ambiental do Estado de Sao Paulo. Departamento de Análises Ambientais; BrasilFil: Taylor, Huw D.. University of Brighton; Reino UnidoFil: Rose, Joan B.. Michigan State University; Estados UnidosFil: Wuertz, Stefan. Nanyang Technological University. Singapore Centre for Environmental Life Sciences Engineering and School of Civil and Environmental Engineering; SingapurFil: Shanks, Orin. U.S. Environmental Protection Agency; Estados UnidosFil: Piringer, Harald. Vrvis Research Center; AustriaFil: Mach, Robert L.. Vienna University of Technology; AustriaFil: Savio, Domenico. Karl Landsteiner University of Health Sciences; AustriaFil: Zessner, Matthias. Vienna University of Technology; AustriaFil: Farnleitner, Andreas. Vienna University of Technology; Austria. Interuniversity Cooperation Centre Water And Health; Austria. Karl Landsteiner University of Health Sciences; Austri

    J-PLUS: Detecting and studying extragalactic globular clusters. The case of NGC 1023.

    Get PDF
    Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Context. Extragalactic globular clusters (GCs) are key objects in studies of galactic histories. The advent of wide-field surveys, such as the Javalambre Photometric Local Universe Survey (J-PLUS), offers new possibilities for the study of these systems. Aims. We performed the first study of GCs in J-PLUS to recover information on the history of NGC 1023, taking advantage of wide-field images and 12 filters. Methods. We developed the semiautomatic pipeline GCFinder for detecting GC candidates in J-PLUS images, which can also be adapted to similar surveys. We studied the stellar population properties of a sub-sample of GC candidates using spectral energy distribution (SED) fitting. Results. We found 523 GC candidates in NGC 1023, about 300 of which are new. We identified subpopulations of GC candidates, where age and metallicity distributions have multiple peaks. By comparing our results with the simulations, we report a possible broad age-metallicity relation, supporting the notion that NGC 1023 has experienced accretion events in the past. With a dominating age peak at 1010 yr, we report a correlation between masses and ages that suggests that massive GC candidates are more likely to survive the turbulent history of the host galaxy. Modeling the light of NGC 1023, we find two spiral-like arms and detect a displacement of the galaxy’s photometric center with respect to the outer isophotes and center of GC distribution (~700pc and ~1600pc, respectively), which could be the result of ongoing interactions between NGC 1023 and NGC 1023A. Conclusions. By studying the GC system of NGC 1023 with J-PLUS, we showcase the power of multi-band surveys for these kinds of studies and we find evidence to support the complex accretion history of the host galaxy. © D. de Brito Silva et al. 2022.D.B.S. also acknowledges Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) process number 2017J00204-6 for the financial support provided for the development of this project. P.C. acknowledges support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under grant 310041/2018-0 and from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) process number 2018J05392-8. A.C.S. acknowledges funding from CNPq and the Rio Grande do Sul Research Foundation (FAPERGS) through grants CNPq-403580/2016-1, CNPq-11153/2018-6, PqG/FAPERGS-17/2551-0001, FAPERGS/CAPES 19/2551-0000696-9 and L’Oréal UNESCO ABC Para Mulheres na Ciência and the Chinese Academy of Sciences (CAS) President’s International Fellowship Initiative (PIFI) through grant E085201009. G.B. acknowledges financial support from the National Autonomous University of México (UNAM) through grant DGAPA/PAPIIT IG100319 and from CONACyT through grant CB2015-252364. J.V. acknowledges the technical members of the UPAD for their invaluable work: Juan Castillo, Tamara Civera, Javier Hernández, Ángel López, Alberto Moreno, and David Muniesa. J.A.H.J. acknowledges Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), process number 2021J08920-8. A.E. acknowledges the financial support from the Spanish Ministry of Science and Innovation and the European Union – NextGenerationEU through the Recovery and Resilience Facility project ICTS-MRR-2021-03-CEFCA and from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under grant 313285/2020-9 D.A.F. thanks the ARC for financial assistance via DP170102344. Y.J.-T has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 898633. Y.J-T. also acknowledges financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709). Based on observations made with the JAST80 telescope telescope/s at the Observatorio Astrofísico de Javalambre, in Teruel, owned, managed, and operated by the Centro de Estudios de Física del Cosmos de Aragón. We thank the Centro de Estudios de Física del Cosmos de Aragón for the allocation of the Director’s Discretionary Time to this program. We thank the OAJ Data Processing and Archiving Unit (UPAD) for reducing and calibrating the OAJ data used in this work. Funding for the J-PLUS Project has been provided by the Governments of Spain and Aragón through the Fondo de Inversiones de Teruel; the Aragón Government through the Research Groups E96, E103, and E16_17R; the Spanish Ministry of Science, Innovation, and Universities (MCIU/AEI/FEDER, UE) with grants PGC2018-097585-B-C21 and PGC2018-097585-B-C22; the Spanish Ministry of Economy and Competitiveness (MINECO) under AYA2015-66211-C2-1-P, AYA2015-66211-C2-2, AYA2012-30789, and ICTS-2009-14; and European FEDER funding (FCDD10-4E-867, FCDD13-4E-2685). The Brazilian agencies FINEP, FAPESP, and the National Observatory of Brazil have also contributed to this project. This work has made use of the computing facilities of the Laboratory of Astroinformatics (IAG/USP, NAT/Unicsul), whose purchase was made possible by the Brazilian agency FAPESP (grant 2009/54006-4) and the INCT-A.Peer reviewe

    The miniJPAS survey: stellar atmospheric parameters from 56 optical filters

    Get PDF
    With a unique set of 54 overlapping narrow-band and two broader filters covering the entire optical range, the incoming Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) will provide a great opportunity for stellar physics and near-field cosmology. In this work, we use the miniJPAS data in 56 J-PAS filters and 4 complementary SDSS-like filters to explore and prove the potential of the J-PAS filter system in characterizing stars and deriving their atmospheric parameters. We obtain estimates for the effective temperature with a good precision (<150 K) from spectral energy distribution fitting. We have constructed the metallicity-dependent stellar loci in 59 colours for the miniJPAS FGK dwarf stars, after correcting certain systematic errors in flat-fielding. The very blue colours, including uJAVA − r, J0378 − r, J0390 − r, uJPAS − r, show the strongest metallicity dependence, around 0.25 mag dex−1. The sensitivities decrease to about 0.1 mag dex−1 for the J0400 − r, J0410 − r, and J0420 − r colours. The locus fitting residuals show peaks at the J0390, J0430, J0510, and J0520 filters, suggesting that individual elemental abundances such as [Ca/Fe], [C/Fe], and [Mg/Fe] can also be determined from the J-PAS photometry. Via stellar loci, we have achieved a typical metallicity precision of 0.1 dex. The miniJPAS filters also demonstrate strong potential in discriminating dwarfs and giants, particularly the J0520 and J0510 filters. Our results demonstrate the power of the J-PAS filter system in stellar parameter determinations and the huge potential of the coming J-PAS survey in stellar and Galactic studies. © 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.This work is supported by the National Natural Science Foundation of China through the projects NSFC 12222301, 12173007, 11603002, National Key Basic R & D Program of China via 2019YFA0405500, and Beijing Normal University grant no. 310232102. We acknowledge the science research grants from the China Manned Space Project with NO. CMS-CSST-2021-A08 and CMS-CSST-2021-A09. This research has made use of the Spanish Virtual Observatory (https://svo.cab.inta-csic.es) project funded by MCIN/AEI/10.13039/501100011033/ through grant PID2020-112949GB-I00. PC acknowledges financial support from the Government of Comunidad Autónoma de Madrid (Spain), via postdoctoral grant ‘Atracción de Talento Investigador’2019-T2/TIC-14760. The work of VMP is supported by NOIRLab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. FJE acknowledges financial support by the Spanish grant MDM-2017-0737 at Centro de Astrobiología (CSIC-INTA), Unidad de Excelencia María de Maeztu. CAG acknowledges financial support from the CAPES through scholarship for developing his PhD project and any related research. Part of this work was supported by institutional research funding IUT40-2, JPUT907, and PRG1006 of the Estonian Ministry of Education and Research. We acknowledge the support by the Centre of Excellence ‘Dark side of the Universe’ (TK133) financed by the European Union through the European Regional Development Fund.With funding from the Spanish government through the "Severo Ochoa Centre of Excellence" accreditation (CEX2021-001131-S).Peer reviewe
    corecore