236 research outputs found

    Spectral transmittance model for stacks of transparencies printed with halftone colors

    No full text
    International audienceThe present work investigates the transmission of light through stacks of halftone printed transparencies. We propose a spectral transmittance model describing the multiple reflections of light between the transparencies, whose individual reflectance and transmittance have themselves been obtained by a prediction model. The model for single printed transparency involves the multiple reflections of light between the interfaces as well as the orientation-dependent attenuations of light within the plastic and ink layers. A procedure enables converting the nominal ink surface coverages into effective ones by taking into account the spreading of the inks. Calibration of the model is based on printing a small number of color patches on one transparency and measuring their spectral transmittance. Regarding the stacks of transparencies, an experimental test carried out with inkjet printed samples shows good agreement between predictions and measurements for stacks of two, three and four transparencies. Stochastic halftones are used in order to avoid the apparition of moiré patterns when superposing the halftones. By inversion of the model, we are able to determine the halftone colors to print on each transparency in order to obtain by superposition one targeted color. An original application of this, called "color matching", consists in producing one color of stack from various combinations of colors on the transparencies. The prediction accuracy of the proposed model guarantees the good visual uniformity of the resulting colored area

    Two-flux and multiflux matrix models for colored surfaces

    No full text
    International audienceThis paper presents various extensions of the so-called two-flux models for prediction of reflectance and transmittance of diffusing media, i.e. the ubelka-Munk model, and the extension of Kubelka-Munk for stacks of diffusing layers. A first matrix formulation of the Kubelka-Munk differential equations leads to a matrix framework based on transfer matrices, which can be extended to stacks of diffusing layers, stacks of nonscattering films, and stacks of scattering and non-scatterings films as a generalization of the Williams-Clapper model for prediction of the reflectance of paper photographs, each of these configurations being illustrated through various examples. This paper also exposes the limitsof the two flux approach and shows that the matrix formalism extends in a straightforward manner to multiflux models, where the size of the matrices is increased

    Spectral reflectance and transmittance prediction model for stacked transparency and paper both printed with halftone colors

    No full text
    International audienceWhen a transparency printed with a first halftone color is deposited on top of a paper printed with a second halftone color, we obtain a third color that we are able to predict in both reflectance and transmittance modes, thanks to a spectral prediction model. The model accounts for the multiple reflections of light between the printed paper and the printed transparency, which are themselves described by specific reflectance and transmittance models, each one being calibrated using a small number of printed colors. The model can account for light scattering by the inks. The measuring geometry and the orientations of light in the transparency are taken into account on the basis of radiometric rules and geometrical optical laws. Experimental testing carried out from several inkjet-printed CMY halftones shows fairly good agreement between predictions and measurements

    Color and Spectral Mixings in Printed Surfaces

    No full text
    International audienceThe present paper discusses the concept of subtractive color mixing widely used in color hardcopy applications and shows that a more realistic concept would be " spectral mixing " : the physical description of the coloration of light by printed surfaces comes from the mixing of light components selectively absorbed by inks or dyes during their patch within the printing materials. Some classical reflectance equations for continuous tone and halftone prints are reviewed and considered as spectral mixing laws. The challenge of extending these models to new inkless printing processes based on laser radiation is also addressed. Color mixing is a key-concept in color reproduction, either by painting, printing, or displaying. It refers to the observation that a large panel of colors (the color gamut) can be achieved by varying the amount of a limited set of base colors, called primaries. With light emitting systems, the primaries are light sources, often with red, green and blue color, that are either superposed or juxtaposed with a shorter period than the visual acuity. Since the tristimulus values of the produced colors is a linear, additive combination of the tristimulus values of the three primaries, this type of color mixing has been called additive color mixing. This concept, based on Grassman's additivity law, enabled the color matching experiments at the basis of colorimetry [1]. In opposition to the light emitting systems, paintings and printed hardcopies selectively attenuate the incident white light in different proportions according to the wavelength. Layers of primaries, paints or inks, are coated on a reflecting support and play a role of spectral filtering of light. This type of color mixing is improperly called subtractive color mixing [2], by reference to the fact that part of the incident light is removed by filtering, but the tristimulus values of paint or ink mixtures cannot be obtained by combining the tristimulus values of the primaries; it is therefore not a color mixing in the sense of colorimetry. However, the subtractive color mixing is also related to a physical experience, which consists in producing many colors by mixing nonscattering dyes, usually of cyan, magenta and yellow color. According to the Beer-Lambert-Bouguer law [1], the spectral absorption coefficient of the dye mixture, () K λ , is a linear, additive combi-The final publication is available at http://link.springer.co

    Matrix method to predict the spectral reflectance of stratified surfaces including thick layers and thin films

    No full text
    The most convenient way to assess the color rendering of a coated, painted, or printed surface in various illumination and observation configurations is predict its spectral, angular reflectance using an optical model. Most of the time, such a surface is a stack of layers having different scattering properties and different refractive indices. A general model applicable to the widest range of stratified surfaces is therefore appreciable. This is what we propose in this paper by introducing a method based on light transfer matrices: the transfer matrix representing the stratified surface is the product of the transfer matrices representing the different layers and interfaces composing it, each transfer matrix being expressed in terms of light transfers (e.g. diffuse reflectances and transmittances in the case of diffusing layers). This general model, inspired of models used in the domain of thin films, can be used with stacks of diffusing or nonscattering layers for any illumination-observation geometry. It can be seen, in the case of diffusing layers, as an extension of the Saunderson-corrected Kubelka-Munk model and Kubelka's layering model. We illustrate the through an experimental example including a thin coating, a thick glass plate and a diffusing background. 2. Introduction For a long time, the variation of the spectral properties of surfaces and objects by application of coatings has been a wide subject of investigation for physicians who proposed several models based on specific mathematical formalisms according to the type of physical components and the application domain. In the domain of paints, papers, and other diffusing media, a classical approach is to use the Kubelka-Munk system of two coupled differential equations to describe the propagation of diffuse fluxes in the medium [1,2]. The extension of this model by Kubelka to stacks of paint layers is based on geometrical series describing the multiple reflections and transmissions of these diffuse fluxes between the different layers [3,4]. Geometrical series were also used by Saunderson [5] when deriving his correction of the Kubelka-Munk model in order to account for the internal reflections of light between the paint layer and the paint-air interface, by Clapper and Yule [6] in their reflectance mode

    Assessing the capacity of two-flux models to predict the spectral properties of layered materials

    No full text
    International audienceA classical way of coloring a surface in order to create a still image is the application of a colored coating. The more recent digital printing systems enable depositing thick coatings or successive ink layers. The color rendering of the surface depends on the optical properties of the coated materials (optical index, spectral scattering and absorption coefficients) and their thickness. In order to predict its spectral reflectance as a function of these parameters, the so-called two-flux approach is to be tested in first since the model is simple and relies on analytical equations. It has a good chance to provide accurate predictions for coatings made of solid layers of strongly scattering or nonscattering media, or even complex stratified coatings obtained by stacking nonsymmetrical components such as printed films. The generalized Kubelka-Munk model summarized in this paper enables treating all these configurations with a unified mathematical formalism. But it has limitations and may provide poor color predictions for certain types of layered materials. We therefore propose a simple method based on parameters of the model to check the precision of the two-flux model for a given type of coating

    Étude de nouveaux mélanges électrolytiques à base d'ylures de phosphore ou de phosphines avec leurs sels de phosphonium pour application en pile solaire

    Get PDF
    Les ylures de phosphore, employés comme catalyseur latent dans plusieurs réactions, trouvent aussi des applications dans des réactions d'intérêt biologique. Par exemple, leur utilisation dans des réactions de Wittig permet de synthétiser la vitamine A et d'autres caroténoïdes. Récemment, les ylures ont même été employés dans la réaction de Mitsunobu afin de remplacer le diéthylazodicarboxylate (DEAD). Le groupe du Professeur Benoît Marsan à l'UQÀM, qui développe depuis plusieurs années une cellule photovoltaïque électrochimique (CPE), s'est penché sur la réactivité des ylures de phosphore. Il a déjà été démontré, par voltampérométrie cyclique (VC), que la réduction électrochimique de certains sels de phosphonium mène à la formation de leur ylure correspondant. Ces comportements permettent de croire qu'il serait possible d'élaborer des couples redox organiques à partir de mélanges électrolytiques composés d'ylures de phosphore et de leur sel de phosphonium correspondant. La conception de nouveaux couples redox pour les CPEs et les cellules sensibilisées par un colorant, ou mieux connues sous le nom de piles de "type Gratzel", doit permettre l'amélioration de plusieurs points. Deux des principaux problèmes sont la faible conductivité ionique ainsi que la trop forte absorption de la lumière visible (empêchant celle-ci de se rendre à l'électrode photoactive) par le milieu électrolytique qui constitue l'une des composantes de la pile solaire qui limite son rendement de conversion d'énergie. Le système électrolytique ylure/sel pourrait grandement améliorer la conductivité ionique du milieu électrolytique, considérant la possibilité d'un échange de proton entre le sel et l'ylure, dont le mécanisme de migration de charges serait alors analogue au mécanisme de Grotthus dans l'eau. Dans le cadre de ce projet de maîtrise, des mélanges électrolytiques basés sur des ylures de phosphore (Ph₃PCHCN, Me₃PCHCN et Et₃PCHCN) en présence de leur sel de phosphonium correspondant ont été étudiés et comparés à des mélanges électrolytiques composés de phosphines (Ph₃P et Ph₂PCN), elles aussi en présence de leur sel de phosphonium. Tout d'abord, les ylures, les phosphines et les sels ont été synthétisés puis caractérisés chimiquement par spectroscopie RMN proton et phosphore. Par la suite, des mélanges ylure/sel et phosphine/sel de quelques compositions (rapports ylure ou phosphine/sel) ont été réalisés dans les solvants suivants: acétonitrile, éthylène carbonate-diméthylcarbonate en rapport molaire 1: 1 (EC-DMC) et le sel fondu à température ambiante \ud bi((trifluorométhyl)sulfonyl)imide de 1-éthyl-3-méthylimidazolium (EMITFSI). Les résultats obtenus par spectroscopie d'impédance montrent que ces systèmes sont bien conducteurs (> 1 mS cm­­¯¹). Ces systèmes se sont avérés chimiquement et électrochimiquement\ud stables sur une plage de température comprise entre 293 K et 353 K, en plus de présenter une faible coloration. Toutes ces propriétés sont recherchées pour améliorer la performance des systèmes électrolytiques, des CPEs et des piles de "type Grätzel". Les mesures de conductivité et de viscosité, ainsi que des expériences RMN ³¹p, ont permis de mieux comprendre les propriétés électrochimiques observées par VC. Cependant, il a aussi été démontré, par VC, que ces systèmes sont caractérisés par un mécanisme réactionnel irréversible ne permettant pas l'utilisation de ces mélanges en tant que couples redox. De plus, un mécanisme réactionnel associé aux réactions d'oxydation et de réduction observées par VC a été proposé dans ce travail. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Voltampérométrie cyclique, Ylures de phosphore, Conductivité, Piles solaires

    Fabrication, caractérisation et étude électrochimique de microcapsules conductrices à base de dérivés carbazole aminés pour la conception de biopiles enzymatiques

    Full text link
    L’objectif général de cette thèse est de développer une plateforme d’immobilisation d’enzymes efficace pour application en biopile. Grâce à la microencapsulation ainsi qu’au choix judicieux des matériaux polymériques pour la fabrication de la plateforme d’immobilisation, l’efficacité du transfert électronique entre l’enzyme encapsulée et l’électrode serait amélioré. Du même coup, les biopiles employant cette plateforme d’immobilisation d’enzymes pourrait voir leur puissance délivrée être grandement augmentée et atteindre les niveaux nécessaires à l’alimentation d’implants artificiels pouvant remplacer des organes telque le pancréas, les reins, le sphincter urinaire et le coeur. Dans un premier temps, le p-phénylènediamine a été employé comme substrat pour la caractérisation de la laccase encapsulée dans des microcapsules de poly(éthylèneimine). La diffusion de ce substrat à travers les microcapsules a été étudiée sous diverses conditions par l’entremise de son oxidation électrochimique et enzymatique afin d’en évaluer sa réversibilité et sa stabilité. La voltampérométrie cyclique, l’électrode à disque tournante (rotating disk electrode - RDE) et l’électrode à O2 ont été les techniques employées pour cette étude. Par la suite, la famille des poly(aminocarbazoles) et leurs dérivés a été identifée pour remplacer le poly(éthylèneimine) dans la conception de microcapsules. Ces polymères possèdent sur leurs unités de répétition (mono- ou diamino) des amines primaires qui seraient disponibles lors de la polymérisation interfaciale avec un agent réticulant tel qu’un chlorure de diacide. De plus, le 1,8-diaminocarbazole (unité de répétition) possède, une fois polymérisé, les propriétés électrochimiques recherchées pour un transfert d’électrons efficace entre l’enzyme et l’électrode. Il a toutefois été nécessaire de développer une route de synthèse afin d’obtenir le 1,8-diaminocarbazole puisque le protocole de synthèse disponible dans la littérature a été jugé non viable pour être utilisé à grande échelle. De plus, aucun protocole de synthèse pour obtenir du poly(1,8-diaminocarbazole) directement n’a été trouvé. Ainsi, deux isomères de structure (1,6 et 1,8-diaminocarbazole) ont pu être synthétisés en deux étapes. La première étape consistait en une substitution électrophile du 3,6-dibromocarbazole en positions 1,8 et/ou 1,6 par des groupements nitro. Par la suite, une réaction de déhalogénation réductive à été réalisée en utilisant le Et3N et 10% Pd/C comme catalyseur dans le méthanol sous atmosphère d’hydrogène. De plus, lors de la première étape de synthèse, le composé 3,6-dibromo-1-nitro-carbazole a été obtenu; un monomère clé pour la synthèse du copolymère conducteur employé. Finalement, la fabrication de microcapsules conductrices a été réalisée en incorporant le copolymère poly[(9H-octylcarbazol-3,6-diyl)-alt-co-(2-amino-9H-carbazol-3,6-diyl)] au PEI. Ce copolymère a pu être synthétisé en grande quantité pour en permettre son utilisation lors de la fabrication de microcapsules. Son comportement électrochimique s’apparentait à celui du poly(1,8-diaminocarbazole). Ces microcapsules, avec laccase encapsulée, sont suffisamment perméables au PPD pour permettre une activité enzymatique détectable par électrode à O2. Par la suite, la modification de la surface d’une électrode de platine a pu être réalisée en utilisant ces microcapsules pour l’obtention d’une bioélectrode. Ainsi, la validité de cette plateforme d’immobilisation d’enzymes développée, au cours de cette thèse, a été démontrée par le biais de l’augmentation de l’efficacité du transfert électronique entre l’enzyme encapsulée et l’électrode.The main objective of this thesis is the development of a conductive enzyme immobilisation template for laccase through microencapsulation allowing an efficient electron transfer between the enzyme and the electrode for application in biofuel cells. First, p-phenylenediamine was used as substrate for the characterisation of the microencapsulated laccase. The diffusion of this substrate through the microcapsules was studied under various conditions by means of its electrochemical and enzymatic oxidation processes in order to assess its reversibility and stability. Cyclic voltammetry, rotating disk electrode and Clark electrode were the techniques used in this study. Moreover, poly(aminocarbazole) compounds and their derivatives were identified to replace poly(ethyleneimine) in the fabrication of the microcapsules. These polymers exhibit primary amines (mono- or di-amino) that could be available for an interfacial polymerisation using a cross-linker agent. Also, the monomer 1,8-diaminocarbazole presents the desired electrochemical propreties for an efficient electron transfer between the enzyme and the electrode. Therefore, a synthetic pathway was developed in order to synthesise this monomer since the available literature protocol was considered inappropriate for large scale synthesis. As for the direct synthesis of the poly(1,8-diaminocarbazole), to our knowledge, there is no protocol currently available. Two structural isomers (1,6 and 1,8-diaminocarbazole) were thus synthesised in two steps. The first step consists in the electrophilic substitution of 3,6-dibromocarbazole in 1,8 and/or 1,6 positions by nitro groups. This step was followed by a dehydrodehalogenation reaction that comes along with reduction of nitro to amino functions using Et3N and 10% Pd/C as the catalyst in methanol under H2 flux. During the first step, the 3,6-dibromo-1-nitro-carbazole was also obtained and appeared to be an efficient monomer in the synthesis of the desired conductive copolymer. Finally, the fabrication of the conductive microcapsules was realised by adding the copolymer poly[(9H-octylcarbazol-3,6-diyl)-alt-co-(2-amino-9H-carbazol-3,6-diyl)] to the PEI. This copolymer was synthesised in large quantities, which allowed its use in the design of microcapsules. Its electrochemical behaviour was similar in many ways to the one of poly(1,8-diaminocarbazole). These conductive microcapsules were then used to modify the surface of a platinum electrode to fabricate the bioelectrode. The main objective of this project was achieved through this final step

    Modèles spectraux pour les surfaces imprimées : approches directes et problématiques inverses

    Get PDF
    Ce mémoire cherche à décrire et mettre en perspective une démarche scientifique construite durant une dizaine d’années de recherches dans le domaine de la reproduction des couleurs, un domaine associé aux disciplines de l’optique et des sciences de l’image. Les travaux présentés visent prédire le rendu visuel de surfaces traitées par divers procédés de coloration, et de créer des effets visuels nouveaux pour les arts graphiques à des fins esthétiques ou de sécurisation de documents. Les connaissances produites portent sur le développement de modèles optiques originaux décrivant la propagation de la lumière dans les couches colorantes et les supports, la métrologie optique nécessaire à la caractérisation de ces surfaces ou à la calibration des modèles, la conception d’effets visuels par impression grâce aux modèles inverses. Le travail de modélisation forme la partie amont de ces recherches. La caractérisation des surfaces et la conception d’effets visuels innovants font l’objet de collaborations industrielles avec des grandes ou petites. Les principaux résultats portent sur des configurations originales d’impression où plusieurs images en demi-tons sont vues l’une au travers de l’autre : impressions recto-verso, empilements d’imprimés… Des modèles propres à ces configurations ont été développés et des effets visuels, quasiment impossibles à obtenir sans modèle, ont été conçus. Une autre activité plus récente concerne de nouveaux procédés de marquage en couleur par laser sur des surfaces pré-fonctionnalisées. Par ailleurs, s’esquisse une démarche plus fondamentale sur l’interaction entre la lumière et les matériaux d’impression et sur la métrologie optique de surfaces à apparence variable

    Two-flux transfer matrix model for predicting the reflectance and transmittance of duplex halftone prints

    No full text
    International audienceWe introduce a model allowing convenient calculation of the spectral reflectance and transmittance of duplex prints. It is based on flux transfer matrices and enables retrieving classical Kubelka-Munk formulas, as well as extended formulas for non-symmetric layers. By making different assumptions on the flux transfers, we obtain two predictive models for the duplex halftone prints: The "duplex Clapper-Yule model" which is an extension of the classical Clapper-Yule model, and the "duplex primary reflectance-transmittance model". The two models can be calibrated from either reflectance or transmittance measurements; only the second model can be calibrated from both measurements, thus giving optimal accuracy for both reflectance and transmittance predictions. The conceptual differences between the two models are deeply analyzed, as well as their advantages and drawbacks in terms of calibration. According to the test carried out in this study with paper printed in inkjet, their predictive performances are good provided appropriate calibration options are selected
    • …
    corecore