1,376 research outputs found

    Gold in graphene: in-plane adsorption and diffusion

    Full text link
    We study the bonding and diffusion of Au in graphene vacancies using density-functional theory. Energetics show that Au adsorbs preferably to double vacancies, steadily in-plane with graphene. All diffusion barriers for the complex of Au in double vacancy are above 4 eV, whereas the barriers for larger vacancies are below 2 eV. Our results support the main results of a recent experiment [Gan et al., Small 4, 587 (2008)], but suggest that the observed diffusion mechanism is not thermally activated, but radiation-enhanced.Comment: 3 pages, 3 figure

    Prevalence of tail biting in pigs and associations to carcass condemnations - a Finnish pilot study

    Get PDF
    The aim of this study was to investigate the prevalence of tail biting in Finland and the relationship between tail biting and carcass condemnation

    Comparison of Raman spectra and vibrational density of states between graphene nanoribbons with different edges

    Full text link
    Vibrational properties of graphene nanoribbons are examined with density functional based tight-binding method and non-resonant bond polarization theory. We show that the recently discovered reconstructed zigzag edge can be identified from the emergence of high-energy vibrational mode due to strong triple bonds at the edges. This mode is visible also in the Raman spectrum. Total vibrational density of states of the reconstructed zigzag edge is observed to resemble the vibrational density of states of armchair, rather than zigzag, graphene nanoribbon. Edge-related vibrational states increase in energy which corroborates increased ridigity of the reconstructed zigzag edge.Comment: 4 pages, 4 figure

    Electronic-structure-induced deformations of liquid metal clusters

    Full text link
    Ab initio molecular dynamics is used to study deformations of sodium clusters at temperatures 5001100500\cdots 1100 K. Open-shell Na14_{14} cluster has two shape isomers, prolate and oblate, in the liquid state. The deformation is stabilized by opening a gap at the Fermi level. The closed-shell Na8_8 remains magic also at the liquid state.Comment: REVTex, 11 pages, no figures, figures (2) available upon request (e-mail to hakkinen at jyfl.jyu.fi), submitted to Phys. Rev.

    Stability of conductance oscillations in monatomic sodium wires

    Get PDF
    We study the stability of conductance oscillations in monatomic sodium wires with respect to structural variations. The geometry, the electronic structure and the electronic potential of sodium wires suspended between two sodium electrodes are obtained from self-consistent density functional theory calculations. The conductance is calculated within the framework of the Landauer-B\"utttiker formalism, using the mode-matching technique as formulated recently in a real-space finite-difference scheme [Phys. Rev. B \textbf{70}, 195402 (2004)]. We find a regular even-odd conductance oscillation as a function of the wire length, where wires comprising an odd number of atoms have a conductance close to the quantum unit G0=e2/πG_0=e^2/\pi\hbar, and even-numbered wires have a lower conductance. The conductance of odd-numbered wires is stable with respect to geometry changes in the wire or in the contacts between the wire and the electrodes; the conductance of even-numbered wires is more sensitive. Geometry changes affect the spacing and widths of the wire resonances. In the case of odd-numbered wires the transmission is on-resonance, and hardly affected by the resonance shapes, whereas for even-numbered wires the transmission is off-resonance and sensitive to the resonance shapes. Predicting the amplitude of the conductance oscillation requires a first-principles calculation based upon a realistic structure of the wire and the leads. A simple tight-binding model is introduced to clarify these results.Comment: 16 pages, 20 figure

    Cross-Cultural Adaptation and Validation of the Finnish Version of the Michigan Hand Outcomes Questionnaire

    Get PDF
    Background and Aims: Michigan Hand Outcomes Questionnaire is a widely used patient-reported outcome measure in hand surgery. The aim of this study was to translate and validate the Michigan Hand Outcomes Questionnaire into Finnish for Finnish patients with hand problems following international standards and guidelines. Material and Methods: The original English Michigan Hand Outcomes Questionnaire was translated into Finnish. Altogether, 115 patients completed the Finnish Michigan Hand Outcomes Questionnaire, and reference outcomes: Disabilities of the Arm and Shoulder, EQ-5D 3L and pain intensity on a visual analog scale. Grip and key pinch forces were measured. After 1-2 weeks, 63 patients completed the Finnish Michigan Hand Outcomes Questionnaire the second time. The Michigan Hand Outcomes Questionnaire was analyzed for internal consistency, repeatability, correlations with the reference outcomes, and factor analysis. Results: Cronbach's alpha ranged from 0.90 to 0.97 in all the Michigan Hand Outcomes Questionnaire subscales, showing high internal consistency. The intraclass correlation coefficient showed good to excellent test-retest reliability ranging from 0.66 to 0.91 in all the Michigan Hand Outcomes Questionnaire subscales. In factor analysis, the structure with six subscales was not confirmed. All the subscales correlated with Disabilities of the Arm and Shoulder score, and five subscales correlated with EQ-5D index. Conclusion: The Finnish version of the Michigan Hand Outcomes Questionnaire showed similar properties compared to the original English version and thus can be used as patient-reported outcome measure for Finnish patients with hand problems.Peer reviewe

    Close-Packing of Clusters: Application to Al_100

    Get PDF
    The lowest energy configurations of close-packed clusters up to N=110 atoms with stacking faults are studied using the Monte Carlo method with Metropolis algorithm. Two types of contact interactions, a pair-potential and a many-atom interaction, are used. Enhanced stability is shown for N=12, 26, 38, 50, 59, 61, 68, 75, 79, 86, 100 and 102, of which only the sizes 38, 75, 79, 86, and 102 are pure FCC clusters, the others having stacking faults. A connection between the model potential and density functional calculations is studied in the case of Al_100. The density functional calculations are consistent with the experimental fact that there exist epitaxially grown FCC clusters starting from relatively small cluster sizes. Calculations also show that several other close-packed motifs existwith comparable total energies.Comment: 9 pages, 7 figure

    Multi-shell gold nanowires under compression

    Full text link
    Deformation properties of multi-wall gold nanowires under compressive loading are studied. Nanowires are simulated using a realistic many-body potential. Simulations start from cylindrical fcc(111) structures at T=0 K. After annealing cycles axial compression is applied on multi-shell nanowires for a number of radii and lengths at T=300 K. Several types of deformation are found, such as large buckling distortions and progressive crushing. Compressed nanowires are found to recover their initial lengths and radii even after severe structural deformations. However, in contrast to carbon nanotubes irreversible local atomic rearrangements occur even under small compressions.Comment: 1 gif figure, 5 ps figure
    corecore