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We study the stability of conductance oscillations in monatomic sodium wires with respect to structural
variations. The geometry, the electronic structure, and the electronic potential of sodium wires suspended
between two sodium electrodes are obtained from self-consistent density functional theory calculations. The
conductance is calculated within the framework of the Landauer-Bütttiker formalism, using the mode-matching
technique as formulated recently in a real-space finite-difference scheme �Phys. Rev. B 70, 195402 �2004��.
We find a regular even-odd conductance oscillation as a function of the wire length, where wires comprising an
odd number of atoms have a conductance close to the quantum unit G0=e2 /��, and even-numbered wires have
a lower conductance. The conductance of odd-numbered wires is stable with respect to geometry changes in
the wire or in the contacts between the wire and the electrodes; the conductance of even-numbered wires is
more sensitive. Geometry changes affect the spacing and widths of the wire resonances. In the case of
odd-numbered wires the transmission is on-resonance, and hardly affected by the resonance shapes, whereas
for even-numbered wires the transmission is off-resonance and sensitive to the resonance shapes. Predicting the
amplitude of the conductance oscillation requires a first-principles calculation based upon a realistic structure
of the wire and the leads. A simple tight-binding model is introduced to clarify these results.
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I. INTRODUCTION

Recent progress in fabricating conductors of atomic di-
mensions has stimulated a large number of experimental and
theoretical studies on these nanoscale devices.1 Conductors
whose cross section contains only a small number of atoms
are commonly called “atomic wires.” Clear evidence that the
fundamental limit of a one atom cross section can be
reached, has been presented for gold atomic wires.2,3 Over
the last decade the electronic transport in atomic wires made
of various metals has been characterized in great detail
experimentally.4–9 Such wires have conductances of the or-
der of the quantum unit G0=e2 /��, so the description of
their transport properties, as well as of their atomic and elec-
tronic structures, requires a full quantum-mechanical
treatment.10

Simple theoretical schemes have been proposed, in which
the atomic wire is described by a jellium11 or a tight-binding
model.12 At present a first-principles approach based on den-
sity functional theory �DFT� gives the most advanced de-
scription of the geometry and electronic structure of atomic
wires. Several theoretical methods that combine the
Landauer-Büttiker formalism with DFT, have been devel-
oped in order to solve the quantum transport problem in
terms of scattering amplitudes.13–18 Alternatively, a Green’s
function formalism is commonly used for solving the trans-
port problem.19–31 Both these approaches are, in fact, com-
pletely equivalent in the case of noninteracting electrons.32

Atomic wires that have a cross section of just one atom,
so-called “monatomic” wires, are the ultimate examples of
quasi-one-dimensional systems. Here the effects of a reduced
dimensionality are expected to be most pronounced. A priori
the existence of monatomic wires is not obvious. Such free-
standing one-dimensional structures might be unstable be-
cause of the low coordination number of the atoms in the

wire. Molecular dynamics simulations based upon an effec-
tive medium model33 or a tight-binding model24,34 have been
used to study the stability of a wire as a function of its
elongation. Since such simulations use highly simplified in-
teratomic potentials, they aim at providing a qualitative un-
derstanding of the wire formation. A more quantitative de-
scription can be provided by first-principles DFT
calculations,35–39 but then only relatively small systems can
be handled. A multitude of different structures has been stud-
ied, such as dimerized, zigzag, and helical wires.40–45

One of the most striking features of monatomic wires is
the nonmonotonic behavior of the conductance as a function
of the number of atoms in the wire.46,47 Such a behavior has
been predicted by Lang for wires consisting of monovalent
atoms.47 His model assumes a chain of atoms suspended be-
tween two planar semi-infinite jellium electrodes. The con-
ductance predicted by this model is much lower than the
quantum unit, which disagrees with experiments on monova-
lent atomic chains.2,4,6 However, the model can be modified
in a simple way by adding a basis consisting of three atoms
on top of the jellium electrodes.48 This reduces the charge
transfer between the wire and leads and it reduces spurious
reflections at the wire-electrode interfaces. The conductance
of a one-atom wire is then close to the quantum unit, in
agreement with experiment.

From the Friedel sum rule it can be shown that the con-
ductance of an atomic chain consisting of monovalent atoms
exhibits a regular oscillation with respect to the number of
atoms in the chain.49 Moreover, assuming mirror reflection
and time-reversal symmetries together with local charge neu-
trality of the wire, the conductance of wires with an odd
number of atoms is expected to be very close to the quantum
unit.50 The period of the conductance oscillation then equals
two atoms. This has been confirmed in conductance calcula-
tions for wires connected to jellium leads via an atomic
basis.51
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The oscillating behavior of the conductance as a function
of the wire length has been observed experimentally in gold
wires,8 and a small parity effect has recently been found in
silver wires.52 Oscillations have also been observed in wires
consisting of atoms with a higher valency.2,53

Since the discovery of the parity effect in wires of
monovalent atoms there has been a discussion on how sen-
sitive the conductance oscillation is to the geometry of the
wire and the contacts. The general arguments given in Ref.
49 suggest that the conductance for odd-numbered wires
should always be higher than for even-numbered ones, pro-
vided that the wires are locally charge neutral. For a sodium
wire connected to �artificial� fcc sodium electrodes the
charge transfer has been estimated and it is found to be rather
small.54 Conductance calculations based upon a scattering
approach have recently been performed for short sodium
wires attached to sodium electrodes with a more realistic bcc
structure.17,55 The phase of the conductance oscillation ob-
tained in these calculations, is consistent with that found in
the jellium electrode calculations.49,51

Other studies predict however that the conductance oscil-
lation found in wires of monovalent atoms is very sensitive
to the geometry. Even the phase of the oscillation can be
reversed such that even-numbered wires have a larger con-
ductance than odd-numbered ones.31,56–58 Using the Friedel
sum rule to calculate the conductance of a wire connected to
jellium electrodes it has been found that the phase of the
conductance oscillation is reversed if the jellium leads be-
come sufficiently sharp.57 This has not been confirmed by
later calculations using a scattering approach to calculate the
conductance, which give results that are consistent with
Lang’s findings for planar jellium electrodes.29,47

From strictly one-dimensional linear combination of
atomic orbitals DFT �LCAO-DFT� calculations, i.e., sodium
chains coupled to one-dimensional metallic leads, it has been
argued that there is a critical distance between the wire and
the leads where the conductance oscillation changes its phase
and even-numbered chains become more conductive than
odd-numbered ones.56 A change of phase has also been pre-
dicted to occur upon elongating the wire by adding atoms. In
short wires the odd-numbered chains then have the higher
conductance and in long wires the even-numbered ones have
the higher conductance. Similar effects have also been
claimed recently for particular atomic configurations in cal-
culations using three-dimensional leads.31,58

In conclusion, some of the results that appeared in the
literature regarding the even-odd conductance oscillation in
monatomic wires seem to be contradictory. In this paper we
present the results of conductance calculations for mon-
atomic sodium wires in order to investigate the effect of the
wire geometry and the wire-lead coupling on the conduc-
tance oscillation. Since sodium has a simple electronic struc-
ture, a sodium wire is one of the simplest examples of an
atomic wire. As such it is an important reference system for
studying wires with a more complicated electronic structure,
and it can be used as a system for benchmarking theoretical
and computational techniques. We perform first-principles
conductance calculations based on the mode-matching
technique17 on sodium wires suspended between sodium
electrodes, while systematically varying the atomic configu-

ration of the wire and that of the wire-lead contacts. The
entire system consisting of the wire and the semi-infinite
electrodes is treated fully atomistically.

We find that the parity effect, i.e., the even-odd conduc-
tance oscillation, is very robust with respect to changing the
structure of the wire and to varying the strength of the cou-
pling between the wire and the leads. In the conductance of
long wires we find no tendency to a phase change in the
even-odd oscillation. The conductance is analyzed using the
electronic levels of free-standing wires in order to interpret
the parity effect in terms of transmission resonances. In ad-
dition, we analyze our first-principles results using a simple
tight-binding model. In particular, we show that local charge
neutrality of the sodium wires provides a strong constraint on
the phase of the conductance oscillation for all atomic struc-
tures considered. In absence of a significant charge transfer
between the wire and the leads, a transmission resonance is
pinned at the Fermi energy for wires containing an odd num-
ber of atoms, which leads to a conductance close to one
quantum unit. Obtaining quantitative values for the conduc-
tance, particularly for even-numbered wires, requires well-
converged first-principles calculations using a realistic struc-
ture of the wire and the leads.

The structure of this paper is as follows. In Sec. II we
discuss the geometry of infinite and finite sodium wires. The
even-odd oscillation of the conductance is discussed in gen-
eral terms in Sec. III. We investigate the effects on the con-
ductance of varying the wire geometry and the contacts be-
tween wire and leads in Sec. IV. Current-voltage
characteristics are analyzed in Sec. V. In Sec. VI we compare
our results to those obtained in previous studies. A summary
and conclusions are presented in the last section. The impor-
tant technical detail of k-point sampling is discussed in Ap-
pendix A.

II. STRUCTURE OF SODIUM WIRES

In this section we investigate possible structures of so-
dium monatomic wires by DFT total energy calculations in
combination with geometry optimizations. DFT total ener-
gies are calculated with the PW91 generalized gradient ap-
proximation �GGA� functional59 and the projector aug-
mented wave �PAW� method,60,61 as implemented in the
Vienna ab initio Simulation Package �VASP�.62–64 We use a
standard frozen core PAW potential and a plane wave basis
set with a kinetic energy cutoff of 24 Ry. A Methfessel-
Paxton smearing is applied in integrations over the Brillioun
zone with a smearing parameter �=0.1 eV. First we discuss
the structure of the infinite wire, and then that of finite wires
connected to bcc sodium electrodes.

A. Infinite wires

An orthorhombic supercell is used with cell parameters
perpendicular to the wire direction equal to 17 Å. Parallel to
the wire the cell parameter is optimized using 24 k points to
sample the Brillouin zone along the wire direction for a cell
containing two atoms.

First we consider a linear wire geometry; the optimized
Na-Na bond length is given in Table I. We have checked that
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a symmetry breaking in the form of a Peierls distortion is
negligible for Na-Na bond lengths near the equilibrium in-
teratomic distance, which agrees with calculations on other
monatomic wires.41,42 Only for sodium wires that are
stretched to interatomic distances larger than 6.91a0 a Peierls
distortion takes place, accompanied by a metal-insulator
transition. In order to test the accuracy of the calculations we
have also calculated the optimized Na-Na bond length in
bulk sodium and in the sodium dimer. The accuracy is found
to be better than 1% as compared to the experimental values,
see Table I.

One-dimensional chains are often unstable with respect to
a deformation in the transverse direction, which results in a
zigzag structure. A linear conformation is preferred if the
interatomic distance exceeds a critical value.41 Indeed we
find that a sodium wire with a zigzag structure has a lower
energy; its geometry is presented in Table I. It is in reason-
able agreement with the one obtained in a previous DFT
local-density approximation �DFT-LDA� calculation.69 A
bond angle of �60� is typically found also in other mon-
atomic wires.45 Upon stretching the wire a transformation
from a zigzag to a linear geometry takes place as soon as the
interatomic distance in the linear wire becomes �6.5a0. In
Ref. 41 a zigzag structure has been found in gold and copper
wires, whereas in potassium and calcium wires it exists only
under compression. The stability of the zigzag geometry has,
therefore, been related to the presence of directional d bonds
in gold and copper. However, our results show that a sodium
wire behaves similarly, which suggests that the occurrence of
a zigzag geometry is not a result of d bonds only.

Whereas the lowest energy structure is paramagnetic, in
Ref. 69 two additional local minima have been found corre-
sponding to ferromagnetic structures with magnetic moments
�0.02�B and 0.12�B, respectively. Our lowest energy �zig-
zag and linear� structures are always paramagnetic. A mag-
netic ordering occurs for zigzag structures when the Fermi
level crosses two energy bands instead of just one band, but
the magnetism disappears rapidly as soon as the wire is
stretched sufficiently. Small magnetic moments have also
been found in calculations on gold wires.69 No trace of mag-
netic effects has been observed in recent conductance mea-
surements performed in magnetic fields.70 Since both experi-
ment and theory favor nonmagnetic structures, we will only
consider nonmagnetic sodium wires in the following.

B. Finite wires

In this section we discuss the structure of a finite mon-
atomic sodium wire suspended between two electrodes. A

reasonable approach is to study the structure of the wire near
its equilibrium geometry, which corresponds to the most
stable chemical bonding. We use the equilibrium geometry of
the infinite linear wire as a starting point for finite wires. The
electrodes consist of bulk Na in the �001� orientation. To
calculate the structure we use a periodic supercell that con-
sists of a slab of five layers of sodium for the electrodes. On
top of each electrode surface an apex atom is placed in a
hollow site and a linear wire bridges the two apex atoms as
shown in Fig. 1. We use a 12�12�4 k-point sampling of
the supercell. During the geometry optimization the atoms in
the wire, the apex atoms, and the atoms in the top surface
layer are allowed to relax.

The results of the geometry optimization for wires of dif-
ferent lengths are given in Table II. We will discuss the most
prominent features of the wire geometries starting from the
electrodes. All structures have mirror symmetry with respect
to a plane through the center of the wire, parallel to the
electrode surface. We emphasize that this symmetry is not
forced upon the system, but is the result of the geometry
optimization. The top layer of the electrode relaxes slightly
outwards; the distance between the top two layers, L1-L2
�4.03a0, is somewhat larger than the bulk value 3.99a0. The
distance between the apex atom and the surface L1-A de-
creases with the length of the wire, which indicates a grow-
ing bond strength. The distance between the apex atom and
the first atom of the wire A-1 is always larger than the maxi-
mum bond length between atoms in the wire. This indicates
that bonding within the wire is stronger than bonding to the
electrodes. For gold wires the opposite has been found, i.e.,
the A-1 distance is shorter than the average bond length.37

Focusing upon the interatomic distances between atoms in
the wire, Table II clearly shows that even-numbered wires
exhibit dimerization, i.e., an alternation between short and
long bonds. A similar tendency is found in odd-numbered
chains, but they have a topological defect, i.e., a “kink,” in
the center of the wire. The average bond length of �6.40a0
in even and in odd-numbered wires is larger than the opti-
mized bond length of 6.30a0 in the infinite wire. The infinite
chain does not show a dimerization until the average bond
length is larger than �6.91a0 �see the previous section�. This
strongly suggests that dimerization in finite chains is en-
forced by their boundaries. A qualitatively similar behavior
has also been found in finite gold wires.37

Since dimerization of a finite wire is associated with its
bonding to the electrodes, one needs to check how sensitive
the dimerization pattern is to the connection between wire
and electrode. We have performed calculations on larger lat-
eral supercells, and have also made the connection more

TABLE I. Na-Na nearest neighbor bond length �in a0� for so-
dium wires, bulk sodium, and the sodium dimer, compared to all-
electron calculations and to experiment. For the zigzag chain also
the bond angle is given.

This work All electron Experiment

Linear 6.30

Zigzag 6.85 �57°�
Bulk 6.88 6.90 �Ref. 65� 6.91 �Ref. 66�

Dimer 5.88 5.85 �Ref. 67� 5.82 �Ref. 68�

FIG. 1. �Color online� Supercell representing a two atom so-
dium wire between two sodium leads terminated by �001� surfaces.
The wire is connected to electrodes via an apex atom placed on top
of each electrode in a hollow site.
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graduate by putting a base of four atoms between the elec-
trode surface and the apex atom. These structural variations
give essentially the same bonding pattern in the wires, i.e.,
even-numbered wires are dimerized, and odd-numbered
wires additionally have a kink in the center. The distance A-1
between apex atom and wire stays larger than the interatomic
distances in the wire. These distances can be modified by
stretching or compressing the wire, but the dimerization pat-
tern is robust. In conclusion, the optimized wire structures
presented in Table II can be considered as typical structures
that are formed by sodium finite chains suspended between
two semi-infinite electrodes.

III. CONDUCTANCE OSCILLATION

Our calculations of the conductance are based on the
mode-matching technique and we use a real-space finite-
difference representation of the Kohn-Sham Hamiltonian and
the wave functions.17 As a first step, the one-electron self-
consistent potentials of the bulk leads and the scattering re-
gion containing the wire are obtained from DFT calculations.
Subsequently the scattering problem is solved at the Fermi
energy by matching the modes in the leads to the wave func-
tion in the scattering region. The conductance G can be ex-
pressed in terms of normalized transmission amplitudes tn,n�
using the Landauer-Büttiker formula71

G = G0�
n,n�

�tn,n��
2, �1�

where n and n� label the right-going modes in the left and
right leads, respectively, and G0=e2 /��. An efficient imple-
mentation of a high-order finite-difference scheme for solv-
ing the scattering problem is discussed in Ref. 17.

In more detail, the one-electron potentials of the leads and
the scattering regions are extracted from two DFT calcula-

tions for bulk bcc sodium and for the supercell shown in Fig.
2, respectively. For these calculations we use a local
Troullier-Martins pseudopotential72 with a core radius rc
=2.95a0; only the 3s electrons of sodium are treated as va-
lence electrons. All plane waves are included up to a kinetic
energy cutoff of 16 Ry. We use 323 k points to sample the
Brillouin zone �BZ� of the cubic bcc unit cell of bulk so-
dium. In our supercell calculations, 82 k points are used to
sample the lateral BZ in case of a 2�2 supercell, and 62 k
points in case of a 3�3 supercell. In all cases a Methfessel-
Paxton smearing with �=0.1 eV is applied. Total energies
are converged to within 5�10−7 Hartrees.

One assumes that the leads outside the scattering region
are perfectly crystalline bulk material. So at the edges of the
scattering region, the potential should join smoothly to the
potentials of the bulk leads. We have checked that this is the
case. Enlarging the scattering region by including two extra
atomic layers in each lead changes the results reported for
the conductance only by �1.5% for even-numbered wires

TABLE II. Optimized bond lengths �in a0� for a Na wire suspended between Na electrodes. The columns
indicate the number of atoms in a wire. The row labels i– j indicate the distance between the i’th and j’th

atom in a wire; d̄ is the average bond length. A-1 indicates the distance between the apex atom and the wire,
L1-A the distance between the apex atom and the surface layer, and L1-L2 the distance between the two top
layers of the electrode. The in-plane Na-Na distance in the top layer is given in the bottom row.

Bonds 1 2 3 4 5 6 7 8 9

1-2 6.35 6.45 6.34 6.41 6.34 6.41 6.33 6.37

2-3 6.45 6.46 6.45 6.45 6.43 6.44 6.44

3-4 6.34 6.45 6.36 6.41 6.37 6.40

4-5 6.41 6.45 6.41 6.45 6.42

5-6 6.34 6.43 6.37 6.42

6-7 6.41 6.44 6.40

7-8 6.33 6.44

8-9 6.37

d̄ 6.35 6.45 6.38 6.43 6.39 6.42 6.39 6.41

A-1 6.53 6.59 6.51 6.54 6.49 6.51 6.47 6.48 6.46

L1-A 3.72 3.64 3.60 3.58 3.52 3.52 3.45 3.43 3.38

L2-L1 4.03 4.03 4.02 4.03 4.02 4.03 4.02 4.06 4.02

In-plane 8.17 8.19 8.20 8.23 8.23 8.25 8.26 8.26 8.31

FIG. 2. �Color online� Structure of an atomic wire consisting of
two sodium atoms between two sodium leads terminated by �001�
surfaces. The boundaries of the supercell are indicated by dashed
lines. Bulk atoms are indicated by yellow �light gray� balls and
atoms in the scattering region by blue �dark gray� balls,
respectively.
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and 	0.5% for odd-numbered wires. The Fermi energy is
extracted from the bulk calculation.73 The only parameters in
calculating the conductance within the mode-matching
finite-difference scheme are the order N of the finite-
difference approximation of the kinetic energy �i.e., the sec-
ond derivative� and the spacing hx,y,z between the real-space
grid points. We use N=4 and hx,y,z=0.80a0; for details and
convergence tests we refer to Ref. 17. The total transmission
is averaged over the k�-point grid of the lateral BZ of the
supercell. To calculate the transmission it is important to ap-
ply a proper k�-point sampling. This will be discussed in
Appendix A. Most calculations are done for a 2�2 lateral
supercell. Enlarging the supercell changes the conductance
only marginally as will be discussed in Sec. IV B.

The electron transport in the crystalline leads is ballistic,
i.e., an electron goes through the leads without any scatter-
ing. The transport properties of a monatomic wire suspended
between two leads depend upon three factors; the number of
atoms in the chain, the geometry of the wire, and the contact
between wire and leads. In Sec. IV we will discuss how these
factors influence the conductance. In the present section we
will analyze the conductance of monatomic sodium wires in
a reference geometry, where all Na-Na bond lengths are cho-
sen to be equal to the bulk value 6.91a0, see Table I. As in
the previous section we attach a finite atomic wire to the
leads via two apex atoms, which then have a coordination
number 5. All atoms in the wire have a coordination number
2.

A. First-principles calculations

The calculated conductance as a function of the number
of atoms in the atomic chain is given in Fig. 3. Since a
sodium atom has valence one, both the infinite sodium chain
and bulk sodium have a half-filled band, and the infinite wire
has one conducting channel at the Fermi level.74 The conduc-
tance of the infinite chain is then equal to the quantum unit
G0, and the conductance of finite wires is 
G0. As can be
observed in Fig. 3 the conductance exhibits a regular oscil-
lation as a function of the number of atoms in the wire. The
conductance is very close to G0 for odd-numbered wires, and
for even-numbered wires it is �10% lower. Such a behavior

of the conductance in atomic-sized conductors is very differ-
ent from Ohmic behavior in macroscopic conductors; it ex-
presses the quantum nature of the electron transport at the
nanoscale.

In order to interpret the even-odd oscillation we have cal-
culated the conductance as a function of energy for wires of
different length. The results for monatomic wires consisting
of four and five atoms are shown in Fig. 4. Resonant peaks in
the conductance can be clearly identified. Qualitatively they
correspond to energy levels of a free-standing Na wire,
which are shifted and broadened into resonances by the in-
teraction of the wire with the leads. To illustrate this, the
calculated energy levels of free-standing wires of four and
five atoms are shown as bars in Fig. 4. The levels are suffi-
ciently close to the resonant energies to warrant an interpre-
tation of the conductance in terms of a transmission through
levels of the wire. As is clearly observed in Fig. 4, the Fermi
level is in between two resonant peaks for a four atom wire
and right on top of a resonance for a five atom wire. By
calculating the conductance as a function of energy for wires
of different length it can be shown that this observation can
be generalized. The Fermi level is between resonances for
even-numbered wires and on top of a resonance for odd-
numbered wires.

An intuitive picture of the transmission through the en-
ergy levels is then presented by Fig. 5. Odd-numbered wires
have a highest occupied molecular orbital �HOMO� that is

FIG. 3. Conductance �in units of G0� as a function of the number
of atoms in the atomic chain. All atomic bond lengths in the system
are equal to the bulk value d=6.91a0.

FIG. 4. �Color online� Conductance �in units of G0� as a func-
tion of energy for monatomic wires consisting of four �top figure�
and five �bottom figure� atoms. The red �gray� bars correspond to
the energy levels of free-standing wires. E=0 corresponds to the
Fermi level.
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half filled. Perfect transmission through this state takes place
if the Fermi level aligns with the HOMO. In even-numbered
wires the HOMO is completely filled and separated by a gap
from the LUMO �lowest unoccupied molecular orbital� level.
The Fermi level is then in the HOMO-LUMO gap. The po-
sition of the Fermi level with respect to the HOMO level
causes the off and on resonant behavior of the conductance
as a function of the wire length, which is causing a regular
even-odd oscillation of the conductance. In the next section
we will study this intuitive model in somewhat more detail
by means of a simple tight-binding model.

B. Tight-binding model

To support the intuitive picture presented in the previous
section we use a simple tight-binding model as shown in Fig.
6, in which the leads are modeled as quasi-one-dimensional
systems described by effective parameters. Here �0, � are the
on-site energies and nearest neighbor hopping coefficients of
the leads, and �0�, �� are the corresponding parameters of the
wire. The coupling between the left �right� electrode and the
atomic chain is given by the hopping coefficient �c ��c��.

If the system has mirror symmetry, the coupling is sym-
metric, i.e., �c=�c�. The leads and the chain are made of the
same material �sodium�. If one assumes that all atoms are
neutral �local charge neutrality�, then it is not unreasonable
to set �0=�0�. The conductance can be calculated analytically
for this model by the mode-matching technique.32 The modes
can be labeled by a wave number k in 1D Brillouin zone of
the leads. The familiar relation E=�0+2� cos�ka� gives for a
half-filled band the Fermi energy EF=�0 and the Fermi wave

number kF=� /2a. The parameter � can be used as a scaling
parameter. In the following all energy parameters
�0 ,�0� ,�� ,�c ,�c� are in units of �. The conductance of a wire
at the Fermi energy consisting of n atoms is given by

G = G0, n odd

=G0
4�c

4/��2

�1 + �c
4/��2�2 , n even. �2�

The conductance for odd-numbered wires is equal to the
quantum unit, and it is smaller than the quantum unit for
even-numbered wires �unless �c

2=���. This corresponds to
the situation shown in Fig. 5.

It is instructive to study some other consequences of the
tight-binding model. If 
�=�0−�0��0 then a charge transfer
will take place between the leads and the wire. The conduc-
tance calculated at the Fermi energy for a one-site wire �n
=1� and a two-site wire �n=2� become, respectively,

G = G0
4�c

4


�2 + 4�c
4 , �3�

G = G0
4�c

4��2

��c
4 + ��� + 
��2���c

4 + ��� − 
��2�
. �4�

According to Eq. �3� a nonzero 
� suppresses the transmis-
sion through a one-site wire. The transmission is shifted “off
resonance” and the conductance becomes smaller than the
quantum unit. However, the coupling between wire and lead
also causes a broadening of the resonance, which is propor-
tional to �c. This broadening partially compensates for the
decrease of the conductance. If the coupling is sufficiently
strong, i.e., 4�c

4�
�2, then the conductance is again close to
the quantum unit. In the limit of weak coupling, i.e., 4�c

4

�
�2, the conductance goes to zero with decreasing �c for
any nonzero 
�. The conductance as a function of �c is
shown in Figs. 7�a� and 7�b� for two different values of 
�.

The conductance of a two-site wire, see Eq. �4�, behaves
qualitatively different as a function of the coupling strength
�c. In the weak coupling limit, i.e., �c

4� ���±
��2, corre-
sponding to �c�1 in Fig. 7�a�, the conductance goes to zero
with decreasing �c and the decrease is faster than for a one-
site wire. Note that this only holds for 
����. If 
����
then the conductance decreases more slowly with decreasing
�c for a two-site wire than for a one-site wire, see the range
�c�1 in Fig. 7�b�. If the coupling between wire and lead is
strong, i.e., �c

4� ���±
��2, corresponding to �c�1 in Figs.
7�a� and 7�b�, then the conductance always decreases with
increasing �c. This is due to a phenomenon called “pair an-
nihilation” of resonances,50 which happens if the resonance
widths become larger than the spacing between the reso-
nances. In a one-site wire this cannot happen, since there is
only one resonance. Between the strong and weak coupling
regimes there is a value of �c �close to 1� where the conduc-
tance of a two-site wire is equal to the quantum unit, see
Figs. 7�a� and 7�b�.

The conductance of longer wires, i.e., n�2, can be inter-
preted along the same lines. For small 
�, the odd-numbered

FIG. 5. Energy levels for odd- and even-numbered wires. The
Fermi level is in the middle of the HOMO-LUMO gap for even-
numbered wires, and it aligns with the HOMO level for odd-
numbered wires.

FIG. 6. Tight-binding representation of the n-atomic wire at-
tached to two semi-infinite one-dimensional leads.
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wires resemble the one-site wire and the even-numbered
wires resemble the two-site wire, as shown in Fig. 7�a�. For
a very large range of coupling strengths �c one obtains an
even-odd oscillation in the conductance of a nearly constant
amplitude. The conductance of odd-numbered chains is close
to the quantum unit and that of even-numbered chains is
smaller by an amount that depends upon the coupling be-
tween wire and lead. Apparently, this is the case that corre-
sponds to the results of our first-principles calculations, see
Fig. 3.

If 
� becomes larger, the conductance of all wires as a
function of �c becomes qualitatively similar to that of the
two-site wire, see Fig. 7�b� �except the one-site wire, of
course�. The amplitude and even the phase of the conduc-
tance oscillation as a function of the wire length then
strongly depends upon the coupling �c of the wire to the
lead. For instance, if �c	0.7 in Fig. 7�b�, the conductance of
even-numbered wires is higher than that of odd-numbered
wires and all conductances are smaller than the quantum
unit. Note that if 
� is significant, it will be accompanied by
a significant charge transfer between wire and leads. Whether
this situation occurs can be studied by self-consistent first-
principles calculations.

IV. STABILITY OF CONDUCTANCE OSCILLATION

First-principles calculations on a reference geometry give
a regular even-odd oscillation of the conductance as a func-
tion of the wire length, as discussed in the previous section.
The odd-numbered wires have the highest conductance,
close to the quantum unit G0. The simplified tight-binding
model suggests that the geometry might influence the ampli-
tude and even the phase of the conductance oscillation. In

Sec. II we have shown that monatomic sodium wires can
have a linear, zigzag, or dimerized geometry, depending
upon the boundary conditions. In this section we study the
influence of the wire geometry upon the conductance. In par-
ticular, we focus on the question of whether the phase of the
even-odd conductance oscillation is robust to modifications
of the wire geometry.

A. Tension or compression of linear wires

We consider a uniform tension or compression of the
wire. As in the previous section the Na-Na distance between
atoms in the wire is kept at a uniform value d and the dis-
tance dc between the apex atom and the wire is equal to d. As
reference we use the results shown in Fig. 3 where d
=6.91a0, which corresponds to the bond length in bulk so-
dium. If we take the equilibrium bond length d=6.30a0 of
the infinite linear wire as a characteristic bond length, then
d=6.91a0 corresponds to a wire under tension, i.e., a
stretched wire. A wire with d=5.82a0, which corresponds to
the equilibrium bond length of a Na2 molecule, is a wire
under compression.

The results of first-principles calculations of the conduc-
tance as a function of the wire length for d=5.82a0 ,
6.30a0 ,6.91a0 are presented in Fig. 8. In all cases the con-
ductance exhibits a regular even-odd oscillation and the con-
ductance of the odd-numbered wires is close to the quantum
unit. The conduction of the even-numbered wires is smaller
than the quantum unit and it depends only weakly on the
number of atoms in the wire. According to the tight-binding
analysis in Sec. III B, this suggests that the charge transfer
between wire and lead, represented by 
� in Eqs. �3� and �4�,
is very small, see Fig. 7�a�.

The amplitude of the oscillation decreases with decreas-
ing d. Two opposing effects influence the conductance if we
decrease the interatomic spacing d in the wire. Firstly, the
spacing between the resonant levels increases. In tight-
binding terms the parameter �� increases, which tends to
decrease the conductance of even-numbered wires, see Eq.
�2�. Secondly, since dc=d, the resonances become broader if
we decrease the distance between the wire and the lead.

FIG. 7. �a� Conductance �in units of G0� at the Fermi energy as
a function of �c �in units of �� for wires with n=1 �thick solid line�,
2 �large dots�, 3 �thin solid�, 4 �thin dashed�, and 5 �thick dashed�
atoms; 
�=0.02; ��=1, �b� As �a� with 
�=0.7; ��=1.

FIG. 8. Conductance �in units of G0� as a function of the number
of atoms in the wire. The triangles correspond to stretched wires
with d=6.91a0, squares to compressed wires with d=5.82a0, and
diamonds to wires with d=6.30a0.

STABILITY OF CONDUCTANCE OSCILLATIONS IN… PHYSICAL REVIEW B 74, 165416 �2006�

165416-7



Again in tight-binding terms the parameter �c increases,
which tends to increase the conductance of even-numbered
wires, cf. Eq. �2�.75 According to Fig. 8 the effect of the
resonance broadening upon the conductance is larger than
the effect of increased resonance spacing.

One can strengthen this analysis by varying the inter-
atomic distance d in the wire, and the distance dc between
the apex atom and the wire independently. Figure 9 shows
the calculated conductance for a wire with d�dc, i.e., d
=5.82a0 and dc=6.91a0. The conductance oscillations are
quite large, which can be attributed to the increased reso-
nance spacing discussed in the previous paragraph. A small d
results in a large spacing between the resonant levels of the
wire. Therefore, the transmission of even-numbered wires,
which is off resonance at the Fermi level, is low, whereas the
transmission of odd-numbered wires stays on resonance and
is high.

If we calculate the conductance for a wire with d�dc, i.e.,
d=6.91a0 and dc=5.82a0, we see in Fig. 9 that the conduc-
tance oscillation is strongly suppressed. It can be attributed
to the resonance broadening. If the coupling between the
wire and the lead is strong, the resonances of the wire are
wide. The transmission in even-numbered wires is then rela-
tively high, whereas the transmission in odd-numbered wires
stays close to the quantum unit. Figure 9 shows that in the
case of a strong coupling between wire and lead the ampli-
tude of the even-odd oscillation in the conductance can be-
come very small. According to the tight-binding model, Eq.
�2�, this happens if �c

4 /��2	1. Note that such a strong cou-
pling is less likely for sodium monatomic wires with opti-
mized geometries, because the results discussed in Sec. II
indicate that d�dc. According to Ref. 37 d�dc in gold mon-
atomic chains, which might explain the small amplitude of
the conductance oscillation found experimentally in gold
wires.8

In conclusion, stretching or compressing the wire changes
the amplitude of the conductance oscillation, but it preserves
its phase and the value of the conductance for odd-numbered
wires, which is close to unity.

B. Contact geometry

The coupling between the wire and the leads could be
influenced by the detailed geometry of the two contacts be-

tween the wire and the leads.49 Since the geometries of the
wire-lead contacts are not known from experiment, it makes
sense to study the sensitivity of the calculated conductances
to these geometries. So far in our calculations we have mod-
eled both contacts by one apex atom placed in a hollow site
on the �001� surface in a 2�2 lateral supercell. A more
“gradual” contact is formed by a five atom pyramid placed
on �001� surface, as is shown in Fig. 10. This requires using
�at least� a 3�3 supercell. To check that the size of the
supercell does not influence the results, we have also done
calculations for a 3�3 supercell with one apex atom con-
tacts. The calculated conductances are shown in Fig. 11. The
conductance of monatomic sodium wires seems to be rela-
tively insensitive to the contact geometry. At the same time it
shows that the results obtained with the 2�2 supercell are
converged.

Another way of modifying the contacts is to remove the
apex atoms and position the first and the last atom of the
wire on top of an atom in the �001� surface layer. The calcu-
lated conductances are shown in Figs. 12�a� and 12�b� for the
interatomic distances d=dc=6.91a0 and d=dc=5.82a0, re-
spectively. The results obtained with these “direct” wire-
surface contacts look very similar to the ones obtained with

FIG. 9. Conductance �in units of G0� as a function of the number
of atoms in the wire. The triangles correspond to wires with d
=5.82a0 and dc=6.91a0 and the squares to wires with d=6.91a0 and
dc=5.82a0.

FIG. 10. �Color online� Structure of an atomic wire consisting of
two sodium atoms between two sodium leads terminated by �001�
surfaces. The atomic wire is connected to each surface via a five
atom pyramid. The boundaries of the 3�3 supercell are indicated
by dashed lines. Bulk atoms are indicated by yellow �light gray�
balls and atoms in the scattering region by blue �dark gray� balls,
respectively.

FIG. 11. Conductance �in units of G0� as a function of the num-
ber of atoms in the atomic wire. Squares refer to the 3�3 supercell
with five atom pyramid contacts, diamonds to the 3�3 supercell
with one apex atom contacts, and triangles to the 2�2 supercell
with one apex atom contacts.
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one apex atom contacts, see Fig. 8. The amplitude of the
even-odd oscillation is somewhat smaller for the direct cou-
pling. According to the analysis presented in Sec. IV A this
indicates a stronger coupling between wire and leads, or in
tight-binding terms, a larger �c, cf. Eq. �2�. Note that the
conductance of one-atom wires in Figs. 12�a� and 12�b� is
higher than G0 due to direct tunneling between the elec-
trodes.

One can also break the symmetry and use a direct contact
between the wire and one of the leads, and a one apex atom
contact between the wire and the other lead. The calculated
conductances are given in Figs. 12�a� and 12�b�. A compari-
son with symmetric direct contacts and symmetric one apex
atom contacts, see Fig. 8, shows that the phase of the even-
odd conductance oscillation is the same and the amplitude is
in between that of the two symmetric cases. It means that,
besides the already mentioned stronger coupling between
wire and lead for the direct contact, this symmetry breaking
has little effect on the conductance.

We conclude that varying the geometries of the contacts
between wire and leads does not have a large effect on the
regular even-odd oscillation of the conductance.

C. Wire geometry: zigzag wires and dimerization

In Sec. II we studied the geometry of infinite zigzag
chains. In principle, a structural zigzag deformation could
modify the conductance of a finite monatomic wire.49,76 Fig-
ure 13 shows the calculated conductance of a wire with one
apex atom contacts and bond lengths d=dc=6.91a0 to which
a zigzag distortion pattern is applied with an amplitude cor-
responding to 15% of the bond length. Compared to straight

wires, the conductance of zigzag even-numbered wires
changes by 	3%, whereas the conductance of odd-
numbered wires is hardly affected at all. Such small effects
are in line with results reported previously.49,76

According to the results obtained in Sec. II finite straight
wires with equidistant atoms can spontaneously break their
symmetry by dimerization. The conductance of optimized
broken symmetry structures is discussed in the next section.
Here we study the influence of an excessive symmetry break-
ing. We apply a regular dimerization pattern to the wire,
which consists of an alternation between long and short
bonds with bond lengths d=6.91a0 and d=5.82a0, respec-
tively. Continuing this pattern into the contacts this means
that even-numbered wires have short dc=5.82a0 contacts to
both leads, whereas odd-numbered wires have one short dc
=5.82a0 contact and one long dc=6.91a0 contact. The results
are shown in Fig. 14.

This curve can be analyzed using the tight-binding model
introduced in Sec. III B. Assuming charge neutrality, i.e.,

�=0, we need to generalize Eq. �2� to the case where the
coupling �c to the left and �c� to the right leads are different.
In addition, dimerization in the wire leads to an alternation of

FIG. 12. �a� Conductance �in units of G0� as a function of the
number of atoms in the atomic wire with interatomic distance d
=dc=6.91a0. The triangles �dashed line� correspond to “direct” con-
tacts between wire and leads. The squares �solid line� correspond to
a direct contact at one end of the wire and a one apex atom contact
at the other end. �b� As �a� with d=dc=5.82a0.

FIG. 13. Conductance �in units of G0� as a function of the num-
ber of atoms in the atomic wire. Dashed line and filled rectangles
correspond to zigzag wires; straight line and filled squares to linear
wires with d=6.91 a0.

FIG. 14. Conductance �in units of G0� as a function of the num-
ber of atoms in the atomic wire. The squares correspond to dimer-
ized wires with alternating bond lengths of 6.91a0 and 5.82a0; as a
reference, the triangles correspond to wires with a uniform bond
length 6.91a0.
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two hopping coefficients �� and ��. The conductance of an
n-atomic wire is then given by

G = G0

4
�c

�c�
�2
��

��
�n−1

�1 + 
�c

�c�
�2
��

��
�n−1
2 , n odd

= G0

4
�c�c�

��
�2
��

��
�n−2

�1 + 
�c�c�

��
�2
��

��
�n−2
2 , n even. �5�

One notices from Eq. �5� that even the shortest odd-
numbered wire, n=1 has a conductance smaller than the
quantum unit if �c��c�. This is observed in our first-
principles results, where the conductance of the n=1 wire is
0.95G0, see Fig. 14. Furthermore, Eq. �5� shows that the
conductance of both even-numbered and odd-numbered
wires decreases as a function of increasing n if �����. Also
this is clearly observed in our first-principles calculations.
Dimerization of an infinite wire creates a gap in the density
of states, so, in general, one expects that the conductance
drops as a function of the wire length. A decreasing conduc-
tance for longer wires has been observed experientially for
platinum, but its nature has not been clarified yet.8

Finally, although the conductance for even- and odd-
numbered wires decreases as a function of wire length, its
even-odd oscillation is preserved. Assuming �� /��=�c /�c�
=x for odd-numbered wires and �� /��=�c /�=�c� /��=y for
even-numbered wires the tight-binding model, Eq. �5�, can
be fitted to the first-principles results. This yields the param-
eter ratio’s x	0.81 and y	0.76 for the odd- and even-
numbered dimerized wires presented in Fig. 14.

D. Optimized geometry

In previous sections we studied the influence of the struc-
ture of a monatomic wire upon its conductance by varying
interatomic distances corresponding to values ranging from
the Na dimer 5.82a0 to the Na bulk 6.91a0 values. In this
section we discuss the conductance for wires with optimized
geometries, which were obtained in Sec. II. Figure 15 shows
the results from the first-principles calculations. As a refer-
ence, it also shows the results for wires with equidistant at-
oms corresponding to the geometry of an infinite wire.

It can be observed that the amplitude of the conductance
oscillation for wires with optimized geometry is larger than
for the reference wires. This results from a slight decoupling
of the wire from electrodes, since for the optimized wires

dc� d̄, see Table II and the discussion in Sec. IV B. As can
be seen from Fig. 15, the phase of the even-odd conductance
oscillation is also observed for optimized geometries. More-
over, despite the presence of a topological defect in the cen-
ter of the odd-numbered wires, the conductance of odd-
numbered wires is close to the quantum unit. This is actually
predicted by the tight-binding model for any odd-numbered
wire whose geometry has mirror symmetry with respect to a

plane through the center and perpendicular to the wire, pro-
vided 
�=0.

One might expect the conductance for even-numbered
wires to decrease with the length of the wire, due to the
effect of dimerization as discussed in the previous section.
This does not show in Fig. 15, because the dimerization in
the optimized geometry is much weaker. Therefore, the ef-
fect will show up only in wires that are much longer.

V. BEYOND LINEAR RESPONSE

In the linear response regime the current and therefore the
conductance are fully determined by the electrons at the
Fermi energy. If a finite bias V is applied then the current is
given by

I = G0�
EF−V/2

EF+V/2

T�E,V�dE , �6�

where the transmission coefficient T�E ,V� depends on the
energy of the electron E and the voltage V. The differential
conductance is defined as G�V�=dI /dV.

In this section we discuss some of the consequences of a
finite bias. We make the approximation T�E ,V�	T�E�,
which is valid for a relatively small voltage in the limit that
the electronic structure of the wire is not changed by the
voltage. Examples of transmissions as a function of energy
are given in Fig. 4 for atomic wires with the “reference”
geometry d=dc=6.91a0. The corresponding I-V curves, cal-
culated from Eq. �6�, are given in Fig. 16. From the I-V
curves we calculate the differential conductance and the sec-
ond derivative of the conductance, which are also presented
in Fig. 16.

The conductance varies by less than 5% for biases up to
�±0.2 V, which one might call the linear response regime.
The conductance decreases monotonically for odd-numbered
wires and it increases monotonically for even-numbered
wires for biases up to �0.5 V. The oscillating behavior of
the conductance at higher biases results from the resonant
peaks in the transmission. At biases larger than �0.5 V the
non-self-consistent procedure probably becomes increasingly
inaccurate.51

FIG. 15. Conductance �in units of G0� as a function of the num-
ber of atoms in the atomic wire. The triangles correspond to linear
wires with d=6.30a0 and the squares to wires with optimized
geometry.
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An important characteristic of the conductance curve that
can be measured experimentally is its second derivative at
the Fermi energy. If the transmission near the Fermi energy
EF=0 is approximated by a polynomial function T�E�
=T�0�+T�0��E2, then the differential conductance is G�V�
=G0�T�0�+T�0��V2 /4�. In Sec. III we interpreted the even-
odd conductance oscillation of the conductance in terms of
switching between off- and on-resonance behavior. If this is
true then the second derivative of the conductance
d2G /d2V=T�0�� /2 must be positive for even-numbered
wires and negative for odd-numbered wires at the Fermi en-
ergy, as shown in Fig. 16. At the same time the first deriva-
tive is zero.

VI. DISCUSSION

In this section we compare our results to those obtained in
previous studies. The oscillating behavior of the conductance
of monatomic sodium wires was first suggested from calcu-
lations using planar jellium electrodes.47 The conductance of
both even- and odd-numbered wires is then significantly
lower than the quantum unit and the conductance of even-
numbered wires is larger than that of odd-numbered ones.
Both of these features are likely to be artifacts of using jel-
lium electrodes, since adding atomic bases between wire and
jellium leads reverses the phase of the conductance oscilla-
tion and makes the conductance of odd-numbered wires ap-
proach the quantum unit.48,51 Calculations using tip-shaped
jellium electrodes predict that the phase of the conductance
oscillation critically depends upon the sharpness of the tips,57

although this effect is disputed in recent calculations.29

Using atomistic electrodes with a bulk structure our cal-
culations show that the conductance has a regular even-odd
oscillation, in which the conductance of the odd-numbered
wires in optimized structures is close to the quantum unit and
that of even-numbered wires is approximately 10% lower.
Only the latter is modified substantially if the geometry of
the wire or the contacts between wire and electrodes are
changed within reasonable bounds. Apparently jellium elec-
trodes cause reflections of electrons trying to enter the wire,
which results in the artifacts discussed above. The amplitude
of the conductance oscillation we find, is smaller by �67%
than that obtained using jellium electrodes plus atomic bases.
This would indicate that atomic bases do not completely re-
move the reflections caused by the jellium electrodes.

Calculations based upon one-dimensional metal elec-
trodes predict that it is possible to change the phase of the
conductance oscillation by varying the coupling between the
wire and the electrodes.56 We did not observe such an effect
for three-dimensional atomistic electrodes. In a recent calcu-
lation it is found that the conductance of odd-numbered
wires decreases sharply with increasing wire length, and
even the phase of the conductance oscillation can be reversed
in long wires.31 This is not confirmed by our calculations,
where the conductance of odd-numbered wires stays close to
the quantum unit and the phase of the oscillation is stable.
Experiments on the even-odd conductance oscillation in
monovalent gold wires do not reveal a decrease of the con-
ductance in odd-numbered wires, and the conductance stays
close to the quantum unit.8

Other studies seem to indicate that the phase of the even-
odd conductance oscillation does not depend very sensitively
upon the structure of the electrodes, since the same phase is
observed in calculations using bcc electrodes oriented in the
�111� direction,49 and in calculations using electrodes with an
artificial fcc structure.54 The amplitude of the oscillation is
much more sensitive, however. A previous study on sodium
wires suspended between sodium electrodes gives an ampli-
tude of only 1%, which is an order of magnitude smaller than
what we find using similar geometries.55 Although we do not
know what the cause of this difference is, we observe that the
amplitude of the even-odd conductance oscillation is sensi-
tive to the one-electron potential used in solving the scatter-
ing problem. This potential is obtained from a self-consistent

FIG. 16. Current-voltage characteristics for two �thick dashed
line�, three �thick line�, four �thin dashed line�, and five �thin line�
atomic wires with d=dc=6.91a0. The top, middle, and bottom fig-
ures contain I-V curves, the differential conductance G�V�=dI /dV
as a function of V, and the second derivative of the conductance
d2G�0� /d2V as a function of the number of atoms, respectively.
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electronic structure calculation. Such calculations frequently
use a convergence criterion applied to the total energy. How-
ever, since a variational principle does not apply to the one-
electron potential, the convergence criterion should be much
stricter in order to converge the potential.

As an illustration, Fig. 17 shows the conductance of so-
dium wires calculated from a potential obtained with the
usual energy convergence criterion, compared to one ob-
tained with a stricter energy convergence criterion. We have
checked that the result does not change anymore if the con-
vergence criterion is even made stricter. This figure clearly
shows that changes in the potential that are caused by small
charge transfers can markedly influence the amplitude of the
even-odd conductance oscillation.

VII. SUMMARY AND CONCLUSIONS

We have performed first-principles calculations to study
the stability of even-odd conductance oscillations in a so-
dium monatomic wire with respect to structural variations.
An infinite sodium wire can be linear and consists of equi-
distant atoms or dimers of atoms, or it can have a zigzag
structure, depending upon the tension or compression ap-
plied to the wire. The geometry of finite sodium wires, sus-
pended between two sodium electrodes, is influenced by
boundary effects. Wires comprising an even or odd number
of atoms are dimerized, but odd-numbered wires have a to-
pological defect in the center.

In the linear response regime the conductance is deter-
mined by the electrons at the Fermi energy. The conductance
of sodium wires shows a distinct even-odd oscillation. The
odd-numbered wires have a conductance close to the quan-
tum unit G0=e2 /�� and even-numbered wires have a lower
conductance. This oscillation is remarkably robust, as we
show by systematically varying the structure of the wires and
the geometry of the contacts between the wires and the elec-
trodes. The phase of the oscillation is not affected by these
structural variations, i.e., odd-numbered wires have a higher
conductance than even-numbered ones. Moreover, odd-
numbered wires have a conductance close to the quantum

unit, unless the structural deformation of the wire becomes
very large and the contact to the left lead is markedly differ-
ent from that to the right lead. The conductance of even-
numbered wires is much more sensitive to the wire geometry.
Increasing the interatomic distances in the wire and/or
strengthening the contacts between wire and leads increases
the conductance of even-numbered wires; increasing the
asymmetry between the interatomic distances or between left
and right contacts decreases the conductance.

These results can be interpreted on the basis of resonant
transmission. For odd-numbered wires the Fermi energy co-
incides with a resonance in the transmission, whereas for
even-numbered wires the Fermi energy is between two reso-
nances. Changing the geometry of the wire or the contacts
affects the spacing between the resonances and their widths
and therefore it affects the conductance of even-numbered
wires; decreasing the spacing and/or increasing the widths
increases the conductance.75 Since for odd-numbered wires
the Fermi level is pinned at a resonance, their conductance is
affected much less by changing the wire geometry.

We have formulated a simple tight-binding model to ana-
lyze these results. It shows that the even-odd conductance
oscillation is stable with respect to structural variations, un-
less the on-site energies for atoms in the wire are substan-
tially different from the on-site energies of atoms in the
leads. Note that a large difference in on-site energies is nec-
essarily accompanied by a significant charge transfer be-
tween the wire and the leads. The results of the first-
principles calculations demonstrate that this is not the case.
For wires with equidistant atoms that have mirror symmetry
with respect to a plane perpendicular to the wire, Eq. �2�
shows that if all on-site energies are identical, the conduc-
tance of odd-numbered wires is one quantum unit, whereas
that of even-numbered wires is determined by the ratio of the
wire-lead coupling and the atom-atom coupling within the
wire. Breaking the mirror symmetry, Eq. �5� shows that the
conductance of odd-numbered wires becomes smaller than
one unit. The symmetry breaking has to be large, however, in
order to have a sizable effect on the conductance.

We have also calculated the current-voltage characteris-
tics of sodium wires in the low bias regime. The differential
conductance clearly shows a nonmonotonic behavior. In par-
ticular, the second derivative of the conductance has an al-
ternating sign as a function of the number of atoms in the
wire; even-numbered wires have a positive second derivative
and odd-numbered wires a negative one. This effect can be
ascribed to the resonant nature of the transmission. It could
be used to establish the resonant behavior of the even-odd
conductance oscillation experimentally.

Comparison to other work shows that simple jellium elec-
trodes do not reproduce the even-odd conductance oscillation
correctly. Using atomic bases yields the correct phase of the
oscillation. The conductance of odd-numbered wires is rather
stable with respect to varying the atomic structure, but that of
even-numbered wires is sensitive to structural details and the
quality of the one-electron potential.
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APPENDIX A: k¸-POINT SAMPLING

In this Appendix we discuss the effect of k�-point sam-
pling on the conductance. In modeling a conductor between
two semi-infinite electrodes one usually assumes a supercell
geometry in the lateral direction. The scattering region then
consists of a periodic array of parallel wires, and the lateral
supercell must be chosen large enough to prevent an interac-
tion between these wires. To limit the computational de-
mands the supercell is chosen as small as possible, without a
significant loss of accuracy. According to the results obtained
in Sec. IV B, using a 2�2 supercell is already sufficient for
the Na system discussed here. We average the conductance
over the 2D Brillouin zone �BZ�

G =
1

N�
�
k�

Gk�
, �A1�

where N� is the number of k� points used for the BZ sam-
pling. Calculating the conductance for an infinitely large su-
percell would include contributions from off-diagonal trans-
mission amplitudes between different k�. From our results
we conclude that their contribution is small as compared to
the contribution of the diagonal terms Gk�

already for a 2
�2 supercell.

The calculated conductance Gk�
as a function of k� for

four and five atomic wires is shown in Fig. 18. The disper-
sion of the conductance is relatively small around the Fermi
energy, which means that using a coarse k� grid to calculate
the conductance in the linear response regime is reasonable.
The results discussed in sections have been obtained using a
6�6 grid in the BZ �6 k� points in the irreducible BZ�.
Figure 18 shows that even sampling the BZ with a single k�

point can give a reasonable result. This can be accidental,
however, since the figure also demonstrates that the disper-
sion is quite large both for energies lower and for energies

higher than the Fermi energy. Especially for higher energies
a single k� point is clearly insufficient for calculating the
conductance. This regime becomes important if current-
voltage characteristics are calculated, because such calcula-
tions require an integration over a wide energy range. The
large dispersion at higher energies is related to an increased
number of van Hove singularities in the leads. This suggests
that k�-point sampling can be important for leads containing
atoms with a valency higher than 1, because the number of
van Hove singularities is then usually also higher due to a
more complicated band structure.77
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