987 research outputs found
Conductance through analytic constrictions
We study the dependence of the intrinsic conductance of a nanocontact on its
shape by using the recursion-transfer-matrix method. Hour-glass, torus, and
spherical shapes are defined through analytic potentials, the latter two
serving as rough models for ring-like and spherical molecules, respectively.
The sensitivity of the conductance to geometric details is analyzed and
discussed. Strong resonance effects are found for a spherical contact weakly
coupled to electron reservoirs.Comment: 7 pages, 12 figure
Electronic-structure-induced deformations of liquid metal clusters
Ab initio molecular dynamics is used to study deformations of sodium clusters
at temperatures K. Open-shell Na cluster has two shape
isomers, prolate and oblate, in the liquid state. The deformation is stabilized
by opening a gap at the Fermi level. The closed-shell Na remains magic also
at the liquid state.Comment: REVTex, 11 pages, no figures, figures (2) available upon request
(e-mail to hakkinen at jyfl.jyu.fi), submitted to Phys. Rev.
Supported magnetic nanoclusters: Softlanding of Pd clusters on a MgO surface
Low-energy deposition of neutral Pd_N clusters (N=2-7 and 13) on a MgO(001)
surface F-center (FC) was studied by spin-density-functional molecular dynamics
simulations. The incident clusters are steered by an attractive "funnel"
created by the FC, resulting in adsorption of the cluster, with one of its
atoms bonded atop of the FC. The deposited Pd_2-Pd_6 clusters retain their
gas-phase structures, while for N>6 surface-commensurate isomers are
energetically more favorable. Adsorbed clusters with N > 3 are found to remain
magnetic at the surface.Comment: 5 pages, 2 figs, Phys.Rev.Lett., accepte
Multi-shell gold nanowires under compression
Deformation properties of multi-wall gold nanowires under compressive loading
are studied. Nanowires are simulated using a realistic many-body potential.
Simulations start from cylindrical fcc(111) structures at T=0 K. After
annealing cycles axial compression is applied on multi-shell nanowires for a
number of radii and lengths at T=300 K. Several types of deformation are found,
such as large buckling distortions and progressive crushing. Compressed
nanowires are found to recover their initial lengths and radii even after
severe structural deformations. However, in contrast to carbon nanotubes
irreversible local atomic rearrangements occur even under small compressions.Comment: 1 gif figure, 5 ps figure
Structure and Magnetism of Neutral and Anionic Palladium Clusters
The properties of neutral and anionic Pd_N clusters were investigated with
spin-density-functional calculations. The ground state structures are
three-dimensional for N>3 and they are magnetic with a spin-triplet for 2<=N<=7
and a spin nonet for N=13 neutral clusters. Structural- and spin-isomers were
determined and an anomalous increase of the magnetic moment with temperature is
predicted for a Pd_7 ensemble. Vertical electron detachment and ionization
energies were calculated and the former agree well with measured values for
anionic Pd_N clusters.Comment: 5 pages, 3 figures, fig. 2 in color, accepted to Phys. Rev. Lett.
(2001
Common Origin for Surface Reconstruction and the Formation of Chains of Metal Atoms
During the fracture of nanocontacts gold spontaneously forms freely suspended
chains of atoms, which is not observed for the iso-electronic noble metals Ag
and Cu. Au also differs from Ag and Cu in forming reconstructions at its
low-index surfaces. Using mechanically controllable break junctions we show
that all the 5d metals that show similar reconstructions (Ir, Pt and Au) also
form chains of atoms, while both properties are absent in the 4d neighbor
elements (Rh, Pd, Ag), indicating a common origin for these two phenomena. A
competition between s and d bonding is proposed as an explanation
Broken Symmetry in Density-Functional Theory: Analysis and Cure
We present a detailed analysis of the broken-symmetry mean-field solutions
using a four-electron rectangular quantum dot as a model system. Comparisons of
the density-functional theory predictions with the exact ones show that the
symmetry breaking results from the single-configuration wave function used in
the mean-field approach. As a general cure we present a scheme that
systematically incorporates several configurations into the density-functional
theory and restores the symmetry. This cure is easily applicable to any
density-functional approach.Comment: 4 pages, 4 figures, submitted to PR
Close-Packing of Clusters: Application to Al_100
The lowest energy configurations of close-packed clusters up to N=110 atoms
with stacking faults are studied using the Monte Carlo method with Metropolis
algorithm. Two types of contact interactions, a pair-potential and a many-atom
interaction, are used. Enhanced stability is shown for N=12, 26, 38, 50, 59,
61, 68, 75, 79, 86, 100 and 102, of which only the sizes 38, 75, 79, 86, and
102 are pure FCC clusters, the others having stacking faults. A connection
between the model potential and density functional calculations is studied in
the case of Al_100. The density functional calculations are consistent with the
experimental fact that there exist epitaxially grown FCC clusters starting from
relatively small cluster sizes. Calculations also show that several other
close-packed motifs existwith comparable total energies.Comment: 9 pages, 7 figure
- …