231 research outputs found

    Cluster-resolved dynamic scaling theory and universal corrections for transport on percolating systems

    Full text link
    For percolating systems, we propose a universal exponent relation connecting the leading corrections to scaling of the cluster size distribution with the dynamic corrections to the asymptotic transport behaviour at criticality. Our derivation is based on a cluster-resolved scaling theory unifying the scaling of both the cluster size distribution and the dynamics of a random walker. We corroborate our theoretical approach by extensive simulations for a site percolating square lattice and numerically determine both the static and dynamic correction exponents.Comment: 6 pages, 5 figures, 1 tabl

    Verification of band offsets and electron effective masses in GaAsN/GaAs quantum wells : Spectroscopic experiment versus 10-band k.p modeling

    Get PDF
    Optical transitions in GaAs1-xNx/GaAs quantum wells (QWs) have been probed by two complementary techniques, modulation spectroscopy in a form of photoreflectance and surface photovoltage spectroscopy. Transition energies in QWs of various widths and N contents have been compared with the results of band structure calculations based on the 10-band k.p Hamiltonian. Due to the observation of higher order transitions in the measured spectra, the band gap discontinuities at the GaAsN/GaAs interface and the electron effective masses could be determined, both treated as semi-free parameters to get the best matching between the theoretical and experimental energies. We have obtained the chemical conduction band offset values of 86% for x = 1.2% and 83% for x = 2.2%, respectively. For these determined band offsets, the electron effective masses equal to about 0.09 m(o) in QWs with 1.2% N and 0.15 m(o) for the case of larger N content of 2.2%.Publisher PDFPeer reviewe

    Coherence dynamics and quantum-to-classical crossover in an exciton-cavity system in the quantum strong coupling regime

    Get PDF
    Interaction between light and matter generates optical nonlinearities, which are particularly pronounced in the quantum strong coupling regime. When a single bosonic mode couples to a single fermionic mode, a Jaynes-Cummings (JC) ladder is formed, which we realize here using cavity photons and quantum dot excitons. We measure and model the coherent anharmonic response of this strongly coupled exciton-cavity system at resonance. Injecting two photons into the cavity, we demonstrate a root 2 larger polariton splitting with respect to the vacuum Rabi splitting. This is achieved using coherent nonlinear spectroscopy, specifically four-wave mixing, where the coherence between the ground state and the first (second) rung of the JC ladder can be interrogated for positive (negative) delays. With increasing excitation intensity and thus rising average number of injected photons, we observe spectral signatures of the quantum-to-classical crossover of the strong coupling regime.Peer reviewe

    Analysis Of Parity Between Protein-based Electrophoretic Methods For The Characterization Of Oral Candida Species.

    Get PDF
    Electrophoretic studies of multilocus-enzymes (MLEE) and whole-cell protein (SDS-PAGE) were carried out in order to evaluate the parity between different methods for the characterization of five Candida species commonly isolated from oral cavity of humans by numerical taxonomy methods. The obtained data revealed that sodium dodecyl sulfate polyacrylamide gel electrophoresis is more efficient in grouping strains in their respective species while MLEE has much limited resolution in organizing all strains in their respective species-specific clusters. MLEE technique must be regarded for surveys in which just one species of Candida is involved.95801-

    Intensity fluctuations in bimodal micropillar lasers enhanced by quantum-dot gain competition

    Full text link
    We investigate correlations between orthogonally polarized cavity modes of a bimodal micropillar laser with a single layer of self-assembled quantum dots in the active region. While one emission mode of the microlaser demonstrates a characteristic s-shaped input-output curve, the output intensity of the second mode saturates and even decreases with increasing injection current above threshold. Measuring the photon auto-correlation function g^{(2)}(\tau) of the light emission confirms the onset of lasing in the first mode with g^{(2)}(0) approaching unity above threshold. In contrast, strong photon bunching associated with super-thermal values of g^{(2)}(0) is detected for the other mode for currents above threshold. This behavior is attributed to gain competition of the two modes induced by the common gain material, which is confirmed by photon crosscorrelation measurements revealing a clear anti-correlation between emission events of the two modes. The experimental studies are in excellent qualitative agreement with theoretical studies based on a microscopic semiconductor theory, which we extend to the case of two modes interacting with the common gain medium. Moreover, we treat the problem by an extended birth-death model for two interacting modes, which reveals, that the photon probability distribution of each mode has a double peak structure, indicating switching behavior of the modes for the pump rates around threshold.Comment: 11 pages, 5 figures, submitted to Phys. Rev.

    The Localization Transition of the Two-Dimensional Lorentz Model

    Full text link
    We investigate the dynamics of a single tracer particle performing Brownian motion in a two-dimensional course of randomly distributed hard obstacles. At a certain critical obstacle density, the motion of the tracer becomes anomalous over many decades in time, which is rationalized in terms of an underlying percolation transition of the void space. In the vicinity of this critical density the dynamics follows the anomalous one up to a crossover time scale where the motion becomes either diffusive or localized. We analyze the scaling behavior of the time-dependent diffusion coefficient D(t) including corrections to scaling. Away from the critical density, D(t) exhibits universal hydrodynamic long-time tails both in the diffusive as well as in the localized phase.Comment: 13 pages, 7 figures

    Exciton spin relaxation in InAs/InGaAlAs/InP(001) quantum dashes emitting near 1.55 μm

    Get PDF
    This research was supported by The National Science Center Grant MAESTRO No. 2011/02/A/ST3/00152. Ł. D. acknowledges the financial support from the Foundation for Polish Science within the START fellowship.Exciton spin and related optical polarization in self-assembled InAs/In0.53Ga0.23Al0.24As/InP(001) quantum dashes emitting at 1.55 μm are investigated by means of polarization- and time-resolved photoluminescence, as well as photoluminescence excitation spectroscopy, at cryogenic temperature. We investigate the influence of highly non-resonant and quasi-resonant optical spin pumping conditions on spin polarization and spin memory of the quantum dash ground state. We show that a spin pumping scheme, utilizing the longitudinal-optical-phonon-mediated coherent scattering process, can lead to the polarization degree above 50%. We discuss the role of intrinsic asymmetries in the quantum dash that influence values of the degree of polarization and its time evolution.PostprintPeer reviewe

    Phase transition and critical behaviour of the d=3 Gross-Neveu model

    Full text link
    A second order phase transition for the three dimensional Gross-Neveu model is established for one fermion species N=1. This transition breaks a paritylike discrete symmetry. It constitutes its peculiar universality class with critical exponent \nu = 0.63 and scalar and fermionic anomalous dimension \eta_\sigma = 0.31 and \eta_\psi = 0.11, respectively. We also compute critical exponents for other N. Our results are based on exact renormalization group equations.Comment: 4 pages, 1 figure; v4 corresponds to the published articl

    Antimicrobial Potential Of Some Plant Extracts Against Candida Species.

    Get PDF
    The increase in the resistance to antimicrobial drugs in use has attracted the attention of the scientific community, and medicinal plants have been extensively studied as alternative agents for the prevention of infections. The Candida genus yeast can become an opportunistic pathogen causing disease in immunosuppressive hosts. The purpose of this study was to evaluate dichloromethane and methanol extracts from Mentha piperita, Rosmarinus officinalis, Arrabidaea chica, Tabebuia avellanedae, Punica granatum and Syzygium cumini against Candida species through the analysis of Minimum Inhibitory Concentration (MIC). Results presented activity of these extracts against Candida species, especially the methanol extract.701065-

    Gate-tunable, normally-on to normally-off memristance transition inpatterned LaAlO3/SrTiO3 interfaces

    Get PDF
    The authors gratefully acknowledge the support from the state of Bavaria as well as from the Deutsche Forschungsgemeinschaft (FOR1162 and SFB1170).We report gate-tunable memristive switching in patterned LaAlO3/SrTiO3 interfaces at cryogenic temperatures. The application of voltages in the order of a few volts to the back gate of the device allows controlling and switching on and -off the inherent memory functionality (memristance). For large and small gate voltages a simple non-linear resistance characteristic is observed while a pinched hysteresis loop and memristive switching occurs in an intermediate voltage range. The memristance is further controlled by the density of oxygen vacancies, which is tuned by annealing the sample at 300 °C in nitrogen atmosphere. Depending on the annealing time the memristance at zero gate voltage can be switched on and off leading to normally-on and normally-off memristors. The presented device offers reversible and irreversible control of memristive characteristics by gate voltages and annealing, respectively, which may allow to compensate fabrication variabilities of memristors that complicate the realization of large memristor-based neural networks.PostprintPeer reviewe
    corecore