474 research outputs found

    The Role of the Fc Region in CD70-specific Antibody Effects on Cardiac Transplant Survival

    Get PDF
    Background: The role of the CD70-specific antibody and the mechanisms by which it extends transplant survival are not known. Methods: Fully major histocompatibility complex-mismatched heterotopic heart transplantation (BALB/c to C57BL/6) was performed. Treated mice received intraperitoneal injections of wild-type (WT) CD70-specific antibody (FR70) or IgG1 or IgG2a chimeric antibodies on days 0, 2, 4, and 6 posttransplantation. Results: WT FR70 antibody significantly extended heart transplant survival to 19 days compared with untreated mice (median survival time [MST]=10 days). Graft survival using the nondepleting IgG1 antibody was significantly shorter (MST=14 days), whereas the survival using depleting IgG2a antibody (MST=18) was similar to that using WT FR70. The FR70 and IgG2a antibodies demonstrated a greater efficiency of fixing mouse complement over the IgG1 variant in vitro. CD4 and CD8 T-cell graft infiltration was reduced with treatment; however, this was most pronounced with WT FR70 and IgG2a antibody therapy compared with the IgG1 chimeric variant. Circulating donor-specific IgG alloantibodies were initially reduced with WT FR70 treatment (day 8 posttransplantation) but increased at days 15 and 20 posttransplantation to the level detected in untreated controls. Conclusion: We conclude that WT (FR70) and the IgG2a depleting variant of CD70-specific antibody reduce graft infiltrating CD4 and CD8 T cells, transiently reduce serum alloantibody levels, and extend graft survival. In contrast, the nondepleting IgG1 variant of this antibody showed lower efficacy. These data suggest that a depleting mechanism of action and not merely costimulation blockade plays a substantial role in the therapeutic effects of CD70-specific antibody

    Cellular Inhibitor of Apoptosis (cIAP)-mediated ubiquitination of Phosphofurin Acidic Cluster Sorting protein 2 (PACS-2) negatively regulates Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL) cytotoxicity

    Get PDF
    Lysosomal membrane permeabilization is an essential step in TRAIL-induced apoptosis of liver cancer cell lines. TRAIL-induced lysosomal membrane permeabilization is mediated by the multifunctional sorting protein PACS-2 and repressed by the E3 ligases cIAP-1 and cIAP-2. Despite the opposing roles for PACS-2 and cIAPs in TRAIL-induced apoptosis, an interaction between these proteins has yet to be examined. Herein, we report that cIAP-1 and cIAP-2 confer TRAIL resistance to hepatobiliary cancer cell lines by reducing PACS-2 levels. Under basal conditions, PACS-2 underwent K48-linked polyubiquitination, resulting in PACS-2 proteasomal degradation. Biochemical assays showed cIAP-1 and cIAP-2 interacted with PACS-2 in vitro and co-immunoprecipitation studies demonstrated that the two cIAPs bound PACS-2 in vivo. More importantly, both cIAP-1 and cIAP-2 directly mediated PACS-2 ubiquitination in a cell-free assay. Single c-Iap-1 or c-Iap-2 gene knock-outs in mouse hepatocytes did not lead to PACS-2 accumulation. However, deletion of both cIAP-1 and cIAP-2 reduced PACS-2 ubiquitination, which increased PACS-2 levels and sensitized HuH-7 cells to TRAIL-induced lysosomal membrane permeabilization and apoptosis. Correspondingly, deletion of cIAPs sensitized wild-type, but not PACS-2-deficient hepatocarcinoma cells or Pacs-2-/- mouse hepatocytes to TRAIL-induced apoptosis. Together, these data suggest cIAPs constitutively downregulate PACS-2 by polyubiquitination and proteasomal degradation, thereby restraining TRAIL-induced killing of liver cancer cells. © 2014 Guicciardi et al

    Contribution of CD30/CD153 but not of CD27/CD70, CD134/OX40L, or CD137/4-1BBL to the optimal induction of protective immunity to Mycobacterium avium

    Get PDF
    A panel of monoclonal antibodies specific for CD27 ligand (CD70), CD30 ligand (CD153), CD134 ligand (OX40L), and CD137 ligand (4-1BBL) were screened in vivo for their ability to affect the control of Mycobacterium avium infection in C57B1/6 mice. Only the blocking of CD153 led to increased mycobacterial burdens. We then used CD30-deficient mice and found an increase in the proliferation of two strains of M. avium in these mice as compared with control animals. The increased mycobacterial growth was associated with decreased T cell expansion and reduced interferon-gamma (IFN-gamma) responses as a result of reduced polarization of the antigen-specific, IFN-gamma-producing T cells. At late times but not early in infection, the lymphoid cuff surrounding granulomas was depleted in the CD30-deficient animals. This report expands our knowledge about tumor necrosis factor superfamily members involved in the immune responses to mycobacterial infection by identifying CD30-CD153 interactions as required for optimal immune control of M. avium infection

    Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand (Trail) Contributes to Interferon γ–Dependent Natural Killer Cell Protection from Tumor Metastasis

    Get PDF
    Tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) is expressed by in vitro activated natural killer (NK) cells, but the relevance of this observation to the biological function of NK cells has been unclear. Herein, we have demonstrated the in vivo induction of mouse TRAIL expression on various tissue NK cells and correlated NK cell activation with TRAIL-mediated antimetastatic function in vivo. Expression of TRAIL was only constitutive on a subset of liver NK cells, and innate NK cell control of Renca carcinoma hepatic metastases in the liver was partially TRAIL dependent. Administration of therapeutic doses of interleukin (IL)-12, a powerful inducer of interferon (IFN)-γ production by NK cells and NKT cells, upregulated TRAIL expression on liver, spleen, and lung NK cells, and IL-12 suppressed metastases in both liver and lung in a TRAIL-dependent fashion. By contrast, α-galactosylceramide (α-GalCer), a powerful inducer of NKT cell IFN-γ and IL-4 secretion, suppressed both liver and lung metastases but only stimulated NK cell TRAIL-mediated function in the liver. TRAIL expression was not detected on NK cells from IFN-γ–deficient mice and TRAIL-mediated antimetastatic effects of IL-12 and α-GalCer were strictly IFN-γ dependent. These results indicated that TRAIL induction on NK cells plays a critical role in IFN-γ–mediated antimetastatic effects of IL-12 and α-GalCer

    Characterization and application of two RANK-specific antibodies with different biological activities.

    Get PDF
    Antibodies play an important role in therapy and investigative biomedical research. The TNF-family member Receptor Activator of NF-κB (RANK) is known for its role in bone homeostasis and is increasingly recognized as a central player in immune regulation and epithelial cell activation. However, the study of RANK biology has been hampered by missing or insufficient characterization of high affinity tools that recognize RANK. Here, we present a careful description and comparison of two antibodies, RANK-02 obtained by phage display (Newa, 2014 [1]) and R12-31 generated by immunization (Kamijo, 2006 [2]). We found that both antibodies recognized mouse RANK with high affinity, while RANK-02 and R12-31 recognized human RANK with high and lower affinities, respectively. Using a cell apoptosis assay based on stimulation of a RANK:Fas fusion protein, and a cellular NF-κB signaling assay, we showed that R12-31 was agonist for both species. R12-31 interfered little or not at all with the binding of RANKL to RANK, in contrast to RANK-02 that efficiently prevented this interaction. Depending on the assay and species, RANK-02 was either a weak agonist or a partial antagonist of RANK. Both antibodies recognized human Langerhans cells, previously shown to express RANK, while dermal dendritic cells were poorly labeled. In vivo R12-31 agonist activity was demonstrated by its ability to induce the formation of intestinal villous microfold cells in mice. This characterization of two monoclonal antibodies should now allow better evaluation of their application as therapeutic reagents and investigative tools

    Dimerization and nuclear entry of mPER proteins in mammalian cells

    Get PDF
    Nuclear entry of circadian oscillatory gene products is a key step for the generation of a 24-hr cycle of the biological clock. We have examined nuclear import of clock proteins of the mammalian period gene family and the effect of serum shock, which induces a synchronous clock in cultured cells. Previously, mCRY1 and mCRY2 have been found to complex with PER proteins leading to nuclear import. Here we report that nuclear translocation of mPER1 and mPER2 (1) involves physical interactions with mPER3, (2) is accelerated by serum treatment, and (3) still occurs in mCry1/mCry2 double-deficient cells lacking a functional biological clock. Moreover, nuclear localization of endogenous mPER1 was observed in cultured mCry1/mCry2 double-deficient cells as well as in the liver and the suprachiasmatic nuclei (SCN) of mCry1/mCry2 double-mutant mice. This indicates that nuclear translocation of at least mPER1 also can occur under physiological conditions (i.e., in the intact mouse) in the absence of any CRY protein. The mPER3 amino acid sequence predicts the presence of a cytoplasmic localization domain (CLD) and a nuclear localization signal (NLS). Deletion analysis suggests that the interplay of the CLD and NLS proposed to regulate nuclear entry of PER in Drosophila is conserved in mammals, but with the novel twist that mPER3 can act as the dimerizing partner

    Differential cross section and analyzing power of the p p -> pp pi0 reaction at a beam energy of 390 MeV

    Get PDF
    The differential cross section and analyzing power A(y) of the (p) over right arrowp -> pp pi(0) reaction have been measured at RCNP in coplanar geometry at a beam energy of 390 MeV and the dependence on both the pion emission angle and the relative momentum of the final protons has been extracted. The angular variation of A(y) for the large values of the relative momentum studied here shows that this is primarily an effect of the interference of pion s and p waves and this interference can also explain the momentum dependence. Within the framework of a very simple model, these results would suggest that the pion-production operator has a significant long-range component

    Critical Role of the Programmed Death-1 (PD-1) Pathway in Regulation of Experimental Autoimmune Encephalomyelitis

    Get PDF
    Experimental autoimmune encephalomyelitis (EAE) is mediated by autoantigen-specific T cells dependent on critical costimulatory signals for their full activation and regulation. We report that the programmed death-1 (PD-1) costimulatory pathway plays a critical role in regulating peripheral tolerance in murine EAE and appears to be a major contributor to the resistance of disease induction in CD28-deficient mice. After immunization with myelin oligodendrocyte glycoprotein (MOG) there was a progressive increase in expression of PD-1 and its ligand PD-L1 but not PD-L2 within the central nervous system (CNS) of mice with EAE, peaking after 3 wk. In both wild-type (WT) and CD28-deficient mice, PD-1 blockade resulted in accelerated and more severe disease with increased CNS lymphocyte infiltration. Worsening of disease after PD-1 blockade was associated with a heightened autoimmune response to MOG, manifested by increased frequency of interferon γ–producing T cells, increased delayed-type hypersensitivity responses, and higher serum levels of anti-MOG antibody. In vivo blockade of PD-1 resulted in increased antigen-specific T cell expansion, activation, and cytokine production. Interestingly, PD-L2 but not PD-L1 blockade in WT animals also resulted in disease augmentation. Our data are the first demonstration that the PD-1 pathway plays a critical role in regulating EAE
    corecore