6,609 research outputs found
The Outer Tracker Detector of the HERA-B Experiment Part I: Detector
The HERA-B Outer Tracker is a large system of planar drift chambers with
about 113000 read-out channels. Its inner part has been designed to be exposed
to a particle flux of up to 2.10^5 cm^-2 s^-1, thus coping with conditions
similar to those expected for future hadron collider experiments. 13
superlayers, each consisting of two individual chambers, have been assembled
and installed in the experiment. The stereo layers inside each chamber are
composed of honeycomb drift tube modules with 5 and 10 mm diameter cells.
Chamber aging is prevented by coating the cathode foils with thin layers of
copper and gold, together with a proper drift gas choice. Longitudinal wire
segmentation is used to limit the occupancy in the most irradiated detector
regions to about 20 %. The production of 978 modules was distributed among six
different laboratories and took 15 months. For all materials in the fiducial
region of the detector good compromises of stability versus thickness were
found. A closed-loop gas system supplies the Ar/CF4/CO2 gas mixture to all
chambers. The successful operation of the HERA-B Outer Tracker shows that a
large tracker can be efficiently built and safely operated under huge radiation
load at a hadron collider.Comment: 28 pages, 14 figure
A Hadron Blind Detector for the PHENIX Experiment
A novel Hadron Blind Detector (HBD) has been developed for an upgrade of the
PHENIX experiment at RHIC. The HBD will allow a precise measurement of
electron-positron pairs from the decay of the light vector mesons and the
low-mass pair continuum in heavy-ion collisions. The detector consists of a 50
cm long radiator filled with pure CF4 and directly coupled in a windowless
configuration to a triple Gas Electron Multiplier (GEM) detector with a CsI
photocathode evaporated on the top face of the first GEM foil.Comment: 4 pages, 3 figures, Quark Matter 2005 conference proceeding
Aging Studies for the Large Honeycomb Drift Tube System of the Outer Tracker of HERA-B
The HERA-B Outer Tracker consists of drift tubes folded from polycarbonate
foil and is operated with Ar/CF4/CO2 as drift gas. The detector has to stand
radiation levels which are similar to LHC conditions. The first prototypes
exposed to radiation in HERA-B suffered severe radiation damage due to the
development of self-sustaining currents (Malter effect). In a subsequent
extended R&D program major changes to the original concept for the drift tubes
(surface conductivity, drift gas, production materials) have been developed and
validated for use in harsh radiation environments. In the test program various
aging effects (like Malter currents, gain loss due to anode aging and etching
of the anode gold surface) have been observed and cures by tuning of operation
parameters have been developed.Comment: 14 pages, 6 figures, to be published in the Proceedings of the
International Workshop On Aging Phenomena In Gaseous Detectors, 2-5 Oct 2001,
Hamburg, German
The Outer Tracker Detector of the HERA-B Experiment. Part II: Front-End Electronics
The HERA-B Outer Tracker is a large detector with 112674 drift chamber
channels. It is exposed to a particle flux of up to 2x10^5/cm^2/s thus coping
with conditions similar to those expected for the LHC experiments. The
front-end readout system, based on the ASD-8 chip and a customized TDC chip, is
designed to fulfil the requirements on low noise, high sensitivity, rate
tolerance, and high integration density. The TDC system is based on an ASIC
which digitizes the time in bins of about 0.5 ns within a total of 256 bins.
The chip also comprises a pipeline to store data from 128 events which is
required for a deadtime-free trigger and data acquisition system. We report on
the development, installation, and commissioning of the front-end electronics,
including the grounding and noise suppression schemes, and discuss its
performance in the HERA-B experiment
Construction and Performance of Large-Area Triple-GEM Prototypes for Future Upgrades of the CMS Forward Muon System
At present, part of the forward RPC muon system of the CMS detector at the
CERN LHC remains uninstrumented in the high-\eta region. An international
collaboration is investigating the possibility of covering the 1.6 < |\eta| <
2.4 region of the muon endcaps with large-area triple-GEM detectors. Given
their good spatial resolution, high rate capability, and radiation hardness,
these micro-pattern gas detectors are an appealing option for simultaneously
enhancing muon tracking and triggering capabilities in a future upgrade of the
CMS detector. A general overview of this feasibility study will be presented.
The design and construction of small (10\times10 cm2) and full-size trapezoidal
(1\times0.5 m2) triple-GEM prototypes will be described. During detector
assembly, different techniques for stretching the GEM foils were tested.
Results from measurements with x-rays and from test beam campaigns at the CERN
SPS will be shown for the small and large prototypes. Preliminary simulation
studies on the expected muon reconstruction and trigger performances of this
proposed upgraded muon system will be reported.Comment: 7 pages, 25 figures, submitted for publication in conference record
of the 2011 IEEE Nuclear Science Symposium, Valencia, Spai
An overview of the design, construction and performance of large area triple-GEM prototypes for future upgrades of the CMS forward muon system
GEM detectors are used in high energy physics experiments given their good spatial resolution, high rate capability and radiation hardness. An international collaboration is investigating the possibility of covering the 1.6 < vertical bar eta vertical bar < 2.4 region of the CMS muon endcaps with large-area triple-GEM detectors. The CMS high-eta area is actually not fully instrumented, only Cathode Strip Chamber (CSC) are installed. The vacant area presents an opportunity for a detector technology able to to cope with the harsh radiation environment; these micropattern gas detectors are an appealing option to simultaneously enhance muon tracking and triggering capabilities in a future upgrade of the CMS detector. A general overview of this feasibility study is presented. Design and construction of small (10cm x 10cm) and full-size trapezoidal (1m x 0.5m) triple-GEM prototypes is described. Results from measurements with x-rays and from test beam campaigns at the CERN SPS is shown for the small and large prototypes. Preliminary simulation studies on the expected muon reconstruction and trigger performances of this proposed upgraded muon system are reported
Transverse energy production and charged-particle multiplicity at midrapidity in various systems from to 200 GeV
Measurements of midrapidity charged particle multiplicity distributions,
, and midrapidity transverse-energy distributions,
, are presented for a variety of collision systems and energies.
Included are distributions for AuAu collisions at ,
130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, CuCu collisions at
and 62.4 GeV, CuAu collisions at
GeV, UU collisions at GeV,
Au collisions at GeV, HeAu collisions at
GeV, and collisions at
GeV. Centrality-dependent distributions at midrapidity are presented in terms
of the number of nucleon participants, , and the number of
constituent quark participants, . For all collisions
down to GeV, it is observed that the midrapidity data
are better described by scaling with than scaling with . Also presented are estimates of the Bjorken energy density,
, and the ratio of to ,
the latter of which is seen to be constant as a function of centrality for all
systems.Comment: 706 authors, 32 pages, 20 figures, 34 tables, 2004, 2005, 2008, 2010,
2011, and 2012 data. v2 is version accepted for publication in Phys. Rev.
Measurements of elliptic and triangular flow in high-multiplicity HeAu collisions at GeV
We present the first measurement of elliptic () and triangular ()
flow in high-multiplicity HeAu collisions at
GeV. Two-particle correlations, where the particles have a large separation in
pseudorapidity, are compared in HeAu and in collisions and
indicate that collective effects dominate the second and third Fourier
components for the correlations observed in the HeAu system. The
collective behavior is quantified in terms of elliptic and triangular
anisotropy coefficients measured with respect to their corresponding
event planes. The values are comparable to those previously measured in
Au collisions at the same nucleon-nucleon center-of-mass energy.
Comparison with various theoretical predictions are made, including to models
where the hot spots created by the impact of the three He nucleons on the
Au nucleus expand hydrodynamically to generate the triangular flow. The
agreement of these models with data may indicate the formation of low-viscosity
quark-gluon plasma even in these small collision systems.Comment: 630 authors, 9 pages, 4 figures, 2 tables. v2 is the version accepted
for publication by Physical Review Letters. Plain text data tables for the
points plotted in figures for this and previous PHENIX publications are (or
will be) publicly available at http://www.phenix.bnl.gov/papers.htm
Transverse momentum and centrality dependence of dihadron correlations in Au+Au collisions at sqrt(s_NN)=200 GeV: Jet-quenching and the response of partonic matter
Azimuthal angle \Delta\phi correlations are presented for charged hadrons
from dijets for 0.4 < p_T < 10 GeV/c in Au+Au collisions at sqrt(s_NN) = 200
GeV. With increasing p_T, the away-side distribution evolves from a broad to a
concave shape, then to a convex shape. Comparisons to p+p data suggest that the
away-side can be divided into a partially suppressed "head" region centered at
Delta\phi ~ \pi, and an enhanced "shoulder" region centered at Delta\phi ~ \pi
+/- 1.1. The p_T spectrum for the "head" region softens toward central
collisions, consistent with the onset of jet quenching. The spectral slope for
the "shoulder" region is independent of centrality and trigger p_T, which
offers constraints on energy transport mechanisms and suggests that the
"shoulder" region contains the medium response to energetic jets.Comment: 420 authors from 58 institutions, 6 pages, 4 figures. Submitted to
Physical Review Letters. Plain text data tables for the points plotted in
figures for this and previous PHENIX publications are (or will be) publicly
available at http://www.phenix.bnl.gov/papers.htm
- …