1,801 research outputs found

    Heavy Quark Radiative Energy Loss in QCD Matter

    Full text link
    Heavy quark medium induced radiative energy loss is derived to all orders in opacity, (L/λg)n(L/\lambda_g)^n. The analytic expression generalizes the GLV opacity expansion for massless quanta to heavy quarks with mass MM in a QCD plasma with a gluon dispersion characterized by an asymptotic plasmon mass, mg=gT/2m_g=gT/\sqrt{2}. Remarkably, we find that the general result is obtained by simply shifting all frequencies in the GLV series by (mg2+x2M2)/(2xE)(m_g^2+x^2 M^2)/(2 x E). Numerical evaluation of the first order in opacity energy loss shows that both charm and bottom energy losses are much closer to the incoherent radiation limit than light partons in nuclear collisions at both RHIC and LHC energies. However, the radiation lengths of heavy quarks remain large compared to nuclear dimensions and hence high pTp_T heavy quark production is volume rather than surface dominated.Comment: 32 pages, 14 figure

    Jet Tomography of Au+Au Reactions Including Multi-gluon Fluctuations

    Get PDF
    Jet tomography is the analysis of the attenuation pattern of high transverse momentum hadrons to determine certain line integral transforms of the density profile of the QCD matter produced in ultra-relativistic nuclear collisions. In this letter, we calculate the distortion of jet tomography due to multi-gluon fluctuations within the GLV radiative energy loss formalism. We find that fluctuations of the average gluon number, ~ 3 for RHIC initial conditions, reduce the attenuation of pions by approximately a factor Z ~ 0.4-0.5. Therefore the plasma density inferred from jet tomography without fluctuations must be enhanced by a factor 1/Z ~ 2.Comment: 6 pages, 4 .eps figures, uses REVTEX and bbox.st

    Non-Abelian Energy Loss at Finite Opacity

    Full text link
    A systematic expansion in opacity, L/λL/\lambda, is used to clarify the non-linear behavior of induced gluon radiation in quark-gluon plasmas. The inclusive differential gluon distribution is calculated up to second order in opacity and compared to the zeroth order (factorization) limit. The opacity expansion makes it possible to take finite kinematic constraints into account that suppress jet quenching in nuclear collisions below RHIC (s=200\sqrt{s}=200 AGeV) energies.Comment: 4 pages (revtex) with 3 eps figures, submitted to PR

    Collisional Energy Loss of Non Asymptotic Jets in a QGP

    Get PDF
    We calculate the collisional energy loss suffered by a heavy (charm) quark created at a finite time within a Quark Gluon Plasma (QGP) in the classical linear response formalism as in Peigne {\it et al.} \cite{peigne}. We pay close attention to the problem of formulating a suitable current and the isolation of binding and radiative energy loss effects. We find that unrealistic large binding effects arising in previous formulations must be subtracted. The finite time correction is shown to be important only for very short length scales on the order of a Debye length. The overall energy loss is similar in magnitude to the energy loss suffered by a charge created in the asymptotic past. This result has significant implications for the relative contribution to energy loss from collisional and radiative sources and has important ramifications for the ``single electron puzzle'' at RHIC.Comment: 15 Pages, 11 figures, revte

    Elliptic flow from a parton cascade

    Get PDF
    The dependence of elliptic flow at RHIC energies on the effective parton scattering cross section is calculated using the ZPC parton cascade model. We show that the v_2 measure of elliptic flow saturates early in the evolution before the hadronization transition to a rather large value ~0.05-0.15 as \sigma_g varies from 2-10 mb and thus is a sensitive probe of the dynamics in the plasma phase.Comment: 13 pages, 4 figure

    Multiple Parton Scattering in Nuclei: Parton Energy Loss

    Get PDF
    Multiple parton scattering and induced parton energy loss is studied in deeply inelastic scattering (DIS) off nuclei. The effect of multiple scattering of a highly off-shell quark and the induced parton energy loss is expressed in terms of the modification to the quark fragmentation functions. We derive such modified quark fragmentation functions and their QCD evolution equations in DIS using generalized factorization of higher twist parton distributions. We consider double-hard, hard-soft parton scattering as well as their interferences in the same framework. The final result, which depends on both the diagonal and off-diagonal twist-four parton distributions in nuclei, demonstrates clearly the Landau-Pomeranchuk-Migdal interference features and predicts a unique nuclear modification of the quark fragmentation functions.Comment: Final version published in Nucl. Phys. A. 40 pages in RevTex with 15 postscript figure
    corecore