9 research outputs found

    Genetically Programmed Differences in Epidermal Host Defense between Psoriasis and Atopic Dermatitis Patients

    Get PDF
    In the past decades, chronic inflammatory diseases such as psoriasis, atopic dermatitis, asthma, Crohn’s disease and celiac disease were generally regarded as immune-mediated conditions involving activated T-cells and proinflammatory cytokines produced by these cells. This paradigm has recently been challenged by the finding that mutations and polymorphisms in epithelium-expressed genes involved in physical barrier function or innate immunity, are risk factors of these conditions. We used a functional genomics approach to analyze cultured keratinocytes from patients with psoriasis or atopic dermatitis and healthy controls. First passage primary cells derived from non-lesional skin were stimulated with pro-inflammatory cytokines, and expression of a panel of 55 genes associated with epidermal differentiation and cutaneous inflammation was measured by quantitative PCR. A subset of these genes was analyzed at the protein level. Using cluster analysis and multivariate analysis of variance we identified groups of genes that were differentially expressed, and could, depending on the stimulus, provide a disease-specific gene expression signature. We found particularly large differences in expression levels of innate immunity genes between keratinocytes from psoriasis patients and atopic dermatitis patients. Our findings indicate that cell-autonomous differences exist between cultured keratinocytes of psoriasis and atopic dermatitis patients, which we interpret to be genetically determined. We hypothesize that polymorphisms of innate immunity genes both with signaling and effector functions are coadapted, each with balancing advantages and disadvantages. In the case of psoriasis, high expression levels of antimicrobial proteins genes putatively confer increased protection against microbial infection, but the biological cost could be a beneficial system gone awry, leading to overt inflammatory disease

    b-Defensin-2 Protein Is a Serum Biomarker for Disease Activity in Psoriasis and Reaches Biologically Relevant Concentrations in Lesional Skin

    Get PDF
    Abstract Background: Previous studies have extensively documented antimicrobial and chemotactic activities of beta-defensins. Human beta-defensin-2 (hBD-2) is strongly expressed in lesional psoriatic epidermis, and recently we have shown that high beta-defensin genomic copy number is associated with psoriasis susceptibility. It is not known, however, if biologically and pathophysiologically relevant concentrations of hBD-2 protein are present in vivo, which could support an antimicrobial and proinflammatory role of beta-defensins in lesional psoriatic epidermis

    Ξ²-Defensin-2 Protein Is a Serum Biomarker for Disease Activity in Psoriasis and Reaches Biologically Relevant Concentrations in Lesional Skin

    Get PDF
    BACKGROUND: Previous studies have extensively documented antimicrobial and chemotactic activities of beta-defensins. Human beta-defensin-2 (hBD-2) is strongly expressed in lesional psoriatic epidermis, and recently we have shown that high beta-defensin genomic copy number is associated with psoriasis susceptibility. It is not known, however, if biologically and pathophysiologically relevant concentrations of hBD-2 protein are present in vivo, which could support an antimicrobial and proinflammatory role of beta-defensins in lesional psoriatic epidermis. METHODOLOGY/PRINCIPAL FINDINGS: We found that systemic levels of hBD-2 showed a weak but significant correlation with beta defensin copy number in healthy controls but not in psoriasis patients with active disease. In psoriasis patients but not in atopic dermatitis patients, we found high systemic hBD-2 levels that strongly correlated with disease activity as assessed by the PASI score. Our findings suggest that systemic levels in psoriasis are largely determined by secretion from involved skin and not by genomic copy number. Modelling of the in vivo epidermal hBD-2 concentration based on the secretion rate in a reconstructed skin model for psoriatic epidermis provides evidence that epidermal hBD-2 levels in vivo are probably well above the concentrations required for in vitro antimicrobial and chemokine-like effects. CONCLUSIONS/SIGNIFICANCE: Serum hBD-2 appears to be a useful surrogate marker for disease activity in psoriasis. The discrepancy between hBD-2 levels in psoriasis and atopic dermatitis could explain the well known differences in infection rate between these two diseases

    A partial transcriptome of human epidermis

    No full text
    Serial analysis of gene expression (SAGE) is a powerful technique for global expression profiling without prior knowledge of the genes of interest. We carried out SAGE analysis of purified keratinocytes derived from human skin biopsy specimens, resulting in a partial transcriptome of human epidermis. We identified 7645 unique SAGE tags with quantitative information from 15,131 collected SAGE tags obtained from similar to 3 X 10(6) epidermal cells. This catalog contains a large number of genes that were not previously known to be expressed by human epidermis. Comparison with the databases of all known human SAGE tags allowed us to identify a number of keratinocyte-specific tags that putatively correspond to formerly unknown genes. Surprisingly, human epidermal keratinocytes in vivo show relatively low expression levels of genes typically associated with epidermal differentiation, whereas the expression levels of housekeeping genes are considerably higher than in cultured keratinocytes. This study provides a first step toward a transcriptome of human epidermis and, as such, harbors a wealth of information to identify genes involved in skin function, and candidate genes for genetic skin disorder

    Psoriasis is associated with increased beta-defensin genomic copy number.

    No full text
    Contains fulltext : 71309.pdf (publisher's version ) (Closed access)Psoriasis is a common inflammatory skin disease with a strong genetic component. We analyzed the genomic copy number polymorphism of the beta-defensin region on human chromosome 8 in 179 Dutch individuals with psoriasis and 272 controls and in 319 German individuals with psoriasis and 305 controls. Comparisons in both cohorts showed a significant association between higher genomic copy number for beta-defensin genes and risk of psoriasis

    Expression of the vanin gene family in normal and inflamed human skin: induction by proinflammatory cytokines.

    Get PDF
    Contains fulltext : 80705.pdf (publisher's version ) (Closed access)The vanin gene family encodes secreted and membrane-bound ectoenzymes that convert pantetheine into pantothenic acid and cysteamine. Recent studies in a mouse colitis model indicated that vanin-1 has proinflammatory activity and suggest that pantetheinases are potential therapeutic targets in inflammatory diseases. In a microarray analysis of epidermal gene expression of psoriasis and atopic dermatitis lesions, we identified vanin-3 as the gene showing the highest differential expression of all annotated genes that we studied (19-fold upregulation in psoriasis). Quantitative real-time PCR analysis confirmed the microarray data on vanin-3 and showed similar induction of vanin-1, but not of vanin-2, in psoriatic epidermis. Immunohistochemistry showed that vanin-3 is expressed in the differentiated epidermal layers. Using submerged and organotypic keratinocyte cultures, we found that vanin-1 and vanin-3 are induced at the mRNA and protein level by psoriasis-associated proinflammatory cytokines (Th17/Th1) but not by Th2 cytokines. We hypothesize that increased levels of pantetheinase activity are part of the inflammatory-regenerative epidermal differentiation program, and may contribute to the phenotype observed in psoriasis

    High expression levels of keratinocyte antimicrobial proteins in psoriasis compared with atopic dermatitis.

    No full text
    Contains fulltext : 47772.pdf (publisher's version ) (Closed access)Recently, it was shown that lesional skin of atopic dermatitis patients expresses low levels of some antimicrobial peptides, compared with psoriasis patients. Here we performed microarray analysis on mRNA from purified lesional epidermal cells of patients with chronic plaque psoriasis and chronic atopic dermatitis, to investigate whether this is a general phenomenon for host defense proteins, and how specific it is for this class of molecules. Microarray data were confirmed on a selected set of genes by quantitative PCR and at the protein level by immunohistochemistry. We found overexpression of many antimicrobial proteins in keratinocytes from psoriatic skin compared with atopic dermatitis skin. Interestingly, we observed that markers of normal differentiation and the activated/hyperproliferative epidermal phenotype were expressed at equal levels. Chronic lesions of psoriasis and atopic dermatitis patients are remarkably similar with respect to cellular proliferation. We conclude that psoriatic epidermis expresses high levels of host defense proteins compared with atopic dermatitis epidermis, and this phenomenon appears to be specific for these proteins. It remains to be investigated whether this is caused by genetic polymorphisms in pathways leading to an epidermal antimicrobial response, or by differences in the cellular infiltrate in psoriasis compared with atopic dermatitis
    corecore