287 research outputs found

    Accumulation of 99mTc-low-density lipoprotein in human malignant glioma.

    Get PDF
    Low-density lipoprotein (LDL) uptake in gliomas was studied to find out if LDL has potential as a drug carrier of boron, especially for boron neutron capture therapy. Single photon emission tomography (SPET) was performed 2 h and 20 h after intravenous injection of autologous 99mTc-labelled LDL in four patients with untreated and five patients with recurrent glioma. 99mTc-LDL uptake was compared with the uptake of 99mTc-labelled human serum albumin (HSA), an established blood pool marker. The intra- and peritumoral distributions of radioactivity in the SPET images were not identical for radiolabelled LDL and HSA. The mean LDL tumour to brain ratio, determined from transversal SPET slices at 20 h post injection, was 1.5 in untreated and 2.2 in recurrent gliomas; the corresponding ratios for HSA were 1.6 and 3.4. The brain to blood ratio remained constant at 2 h and 20 h in both types of tumours. These data are not consistent with highly selective, homogeneous uptake of LDL in gliomas. However, the different tumoral distribution and rate of uptake of 99mTc-LDL, as compared with 99mTc-HSA, indicate that the uptake of LDL is different from that of HSA and that further studies on the mechanism of LDL uptake in glioma are warranted

    Protective role of vitamin B6 (PLP) against DNA damage in Drosophila models of type 2 diabetes

    Get PDF
    Growing evidence shows that improper intake of vitamin B6 increases cancer risk and several studies indicate that diabetic patients have a higher risk of developing tumors. We previously demonstrated that in Drosophila the deficiency of Pyridoxal 5' phosphate (PLP), the active form of vitamin B6, causes chromosome aberrations (CABs), one of cancer prerequisites, and increases hemolymph glucose content. Starting from these data we asked if it was possible to provide a link between the aforementioned studies. Thus, we tested the effect of low PLP levels on DNA integrity in diabetic cells. To this aim we generated two Drosophila models of type 2 diabetes, the first by impairing insulin signaling and the second by rearing flies in high sugar diet. We showed that glucose treatment induced CABs in diabetic individuals but not in controls. More interestingly, PLP deficiency caused high frequencies of CABs in both diabetic models demonstrating that hyperglycemia, combined to reduced PLP level, impairs DNA integrity. PLP-depleted diabetic cells accumulated Advanced Glycation End products (AGEs) that largely contribute to CABs as α-lipoic acid, an AGE inhibitor, rescued not only AGEs but also CABs. These data, extrapolated to humans, indicate that low PLP levels, impacting on DNA integrity, may be considered one of the possible links between diabetes and cancer

    <i>SNHG5</i> promotes colorectal cancer cell survival by counteracting STAU1-mediated mRNA destabilization

    No full text
    We currently have limited knowledge of the involvement of long non-coding RNAs (lncRNAs) in normal cellular processes and pathologies. Here, we identify and characterize SNHG5 as a stable cytoplasmic lncRNA with up-regulated expression in colorectal cancer. Depletion of SNHG5 induces cell cycle arrest and apoptosis in vitro and limits tumour outgrowth in vivo, whereas SNHG5 overexpression counteracts oxaliplatin-induced apoptosis. Using an unbiased approach, we identify 121 transcript sites interacting with SNHG5 in the cytoplasm. Importantly, knockdown of key SNHG5 target transcripts, including SPATS2, induces apoptosis and thus mimics the effect seen following SNHG5 depletion. Mechanistically, we suggest that SNHG5 stabilizes the target transcripts by blocking their degradation by STAU1. Accordingly, depletion of STAU1 rescues the apoptosis induced after SNHG5 knockdown. Hence, we characterize SNHG5 as a lncRNA promoting tumour cell survival in colorectal cancer and delineate a novel mechanism in which a cytoplasmic lncRNA functions through blocking the action of STAU1

    The role of soluble fiber intake in patients under highly effective lipid-lowering therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been demonstrated that statins can increase intestinal sterol absorption. Augments in phytosterolemia seems related to cardiovascular disease.</p> <p>Objective</p> <p>We examined the role of soluble fiber intake in endogenous cholesterol synthesis and in sterol absorption among subjects under highly effective lipid-lowering therapy.</p> <p>Design</p> <p>In an open label, randomized, parallel-design study with blinded endpoints, subjects with primary hypercholesterolemia (n = 116) were assigned to receive during 12 weeks, a daily dose of 25 g of fiber (corresponding to 6 g of soluble fibers) plus rosuvastatin 40 mg (n = 28), rosuvastatin 40 mg alone (n = 30), sinvastatin 40 mg plus ezetimibe 10 mg plus 25 g of fiber (n = 28), or sinvastatin 40 mg plus ezetimibe 10 mg (n = 30) alone.</p> <p>Results</p> <p>The four assigned therapies produced similar changes in total cholesterol, LDL-cholesterol, and triglycerides (p < 0.001 vs. baseline) and did not change HDL-cholesterol. Fiber intake decreased plasma campesterol (p < 0.001 vs. baseline), particularly among those patients receiving ezetimibe (p < 0.05 vs. other groups), and β-sitosterol (p = 0.03 vs. baseline), with a trend for lower levels in the group receiving fiber plus ezetimibe (p = 0.07). Treatment with rosuvastatin alone or combined with soluble fiber was associated with decreased levels of desmosterol (p = 0.003 vs. other groups). Compared to non-fiber supplemented individuals, those treated with fibers had weight loss (p = 0.04), reduced body mass index (p = 0.002) and blood glucose (p = 0.047).</p> <p>Conclusion</p> <p>Among subjects treated with highly effective lipid-lowering therapy, the intake of 25 g of fibers added favorable effects, mainly by reducing phytosterolemia. Additional benefits include improvement in blood glucose and anthropometric parameters.</p

    The corporate brand and strategic direction: Senior business school managers’ cognitions of corporate brand building and management

    Get PDF
    This revelatory study focuses on top Financial Times (FT) ranked British business school managers cognitions of corporate brand building and management. The study insinuates there is a prima facie bilateral link between corporate branding and strategic direction. Among this genus of business school, the data revealed corporate brand building entailed an on-going concern with strategic management, stakeholder management, corporate communications, service focus, leadership, and commitment. These empirical findings, chime with the early conceptual scholarship on corporate brand management dating back to the mid-1990s. These foundational articles stressed the multi-disciplinary and strategic nature of corporate brand management and stressed the significant role of the CEO. As such, this research adds further credence to the above in terms of best-practice vis-à-vis corporate brand management. Curiously, whilst senior managers espouse a corporate brand orientation, corporate brand management is seemingly not accorded a similar status in the curriculum. Drawing on general embedded case study methodological approach, data was collected within eight leading (FT-ranked) business schools in Great Britain at Oxford, Cambridge, Durham, Bradford, Cranfield, Warwick, Lancaster and City (London) Universities. Each of these eight British business schools can be deemed as ‘top’ business schools by virtue of their inclusion in the influential Financial Times (FT) worldwide list of top business schools. The primary mode of qualitative data collection was the 37 in-depth interviews with business school Deans, Associate Deans and other senior faculty members and other managers

    Association of selenoprotein and selenium pathway gnotypes with risk of colorectal cancer and interaction with selenium status

    Get PDF
    Selenoprotein genetic variations and suboptimal selenium (Se) levels may contribute to the risk of colorectal cancer (CRC) development. We examined the association between CRC risk and genotype for single nucleotide polymorphisms (SNPs) in selenoprotein and Se metabolic pathway genes. Illumina Goldengate assays were designed and resulted in the genotyping of 1040 variants in 154 genes from 1420 cases and 1421 controls within the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Multivariable logistic regression revealed an association of 144 individual SNPs from 63 Se pathway genes with CRC risk. However, regarding the selenoprotein genes, only TXNRD1 rs11111979 retained borderline statistical significance after adjustment for correlated tests (PACT = 0.10; PACT significance threshold was P < 0.1). SNPs in Wingless/Integrated (Wnt) and Transforming growth factor (TGF) beta-signaling genes (FRZB, SMAD3, SMAD7) from pathways affected by Se intake were also associated with CRC risk after multiple testing adjustments. Interactions with Se status (using existing serum Se and Selenoprotein P data) were tested at the SNP, gene, and pathway levels. Pathway analyses using the modified Adaptive Rank Truncated Product method suggested that genes and gene x Se status interactions in antioxidant, apoptosis, and TGF-beta signaling pathways may be associated with CRC risk. This study suggests that SNPs in the Se pathway alone or in combination with suboptimal Se status may contribute to CRC development

    Central Role of SREBP-2 in the Pathogenesis of Osteoarthritis

    Get PDF
    Background: Recent studies have implied that osteoarthritis (OA) is a metabolic disease linked to deregulation of genes involved in lipid metabolism and cholesterol efflux. Sterol Regulatory Element Binding Proteins (SREBPs) are transcription factors regulating lipid metabolism with so far no association with OA. Our aim was to test the hypothesis that SREBP-2, a gene that plays a key role in cholesterol homeostasis, is crucially involved in OA pathogenesis and to identify possible mechanisms of action. Methodology/Principal Findings: We performed a genetic association analysis using a cohort of 1,410 Greek OA patients and healthy controls and found significant association between single nucleotide polymorphism (SNP) 1784G>C in SREBP-2 gene and OA development. Moreover, the above SNP was functionally active, as normal chondrocytes’ transfection with SREBP-2-G/C plasmid resulted in interleukin-1β and metalloproteinase-13 (MMP-13) upregulation. We also evaluated SREBP-2, its target gene 3-hydroxy-3-methylglutaryl-coenzymeA reductase (HMGCR), phospho-phosphoinositide3-kinase (PI3K), phospho-Akt, integrin-alphaV (ITGAV) and transforming growth factor-β\beta (TGF-β\beta) mRNA and protein expression levels in osteoarthritic and normal chondrocytes and found that they were all significantly elevated in OA chondrocytes. To test whether TGF-β\beta alone can induce SREBP-2, we treated normal chondrocytes with TGF-β\beta and found significant upregulation of SREBP-2, HMGCR, phospho-PI3K and MMP-13. We also showed that TGF-β\beta activated aggrecan (ACAN) in chondrocytes only through Smad3, which interacts with SREBP-2. Finally, we examined the effect of an integrin inhibitor, cyclo-RGDFV peptide, on osteoarthritic chondrocytes, and found that it resulted in significant upregulation of ACAN and downregulation of SREBP-2, HMGCR, phospho-PI3K and MMP-13 expression levels. Conclusions/Significance: We demonstrated, for the first time, the association of SREBP-2 with OA pathogenesis and provided evidence on the molecular mechanism involved. We suggest that TGF-β\beta induces SREBP-2 pathway activation through ITGAV and PI3K playing a key role in OA and that integrin blockage may be a potential molecular target for OA treatment

    A detailed Hapmap of the Sitosterolemia locus spanning 69 kb; differences between Caucasians and African-Americans

    Get PDF
    BACKGROUND: Sitosterolemia is an autosomal recessive disorder that maps to the sitosterolemia locus, STSL, on human chromosome 2p21. Two genes, ABCG5 and ABCG8, comprise the STSL and mutations in either cause sitosterolemia. ABCG5 and ABCG8 are thought to have evolved by gene duplication event and are arranged in a head-to-head configuration. We report here a detailed characterization of the STSL in Caucasian and African-American cohorts. METHODS: Caucasian and African-American DNA samples were genotypes for polymorphisms at the STSL locus and haplotype structures determined for this locus RESULTS: In the Caucasian population, 13 variant single nucleotide polymorphisms (SNPs) were identified and resulting in 24 different haplotypes, compared to 11 SNPs in African-Americans resulting in 40 haplotypes. Three polymorphisms in ABCG8 were unique to the Caucasian population (E238L, INT10-50 and G575R), whereas one variant (A259V) was unique to the African-American population. Allele frequencies of SNPs varied also between these populations. CONCLUSION: We confirmed that despite their close proximity to each other, significantly more variations are present in ABCG8 compared to ABCG5. Pairwise D' values showed wide ranges of variation, indicating some of the SNPs were in strong linkage disequilibrium (LD) and some were not. LD was more prevalent in Caucasians than in African-Americans, as would be expected. These data will be useful in analyzing the proposed role of STSL in processes ranging from responsiveness to cholesterol-lowering drugs to selective sterol absorption
    corecore