864 research outputs found

    Sub-Microarcsecond Astrometry and New Horizons in Relativistic Gravitational Physics

    Get PDF
    Attaining the limit of sub-microarcsecond optical resolution will completely revolutionize fundamental astrometry by merging it with relativistic gravitational physics. Beyond the sub-microarcsecond threshold, one will meet in the sky a new population of physical phenomena caused by primordial gravitational waves from early universe and/or different localized astronomical sources, space-time topological defects, moving gravitational lenses, time variability of gravitational fields of the solar system and binary stars, and many others. Adequate physical interpretation of these yet undetectable sub-microarcsecond phenomena can not be achieved on the ground of the "standard" post-Newtonian approach (PNA), which is valid only in the near-zone of astronomical objects having a time-dependent gravitational field. We describe a new, post-Minkowskian relativistic approach for modeling astrometric observations having sub-microarcsecond precision and briefly discuss the light-propagation effects caused by gravitational waves and other phenomena related to time-dependent gravitational fields. The domain of applicability of the PNA in relativistic space astrometry is explicitly outlined.Comment: 5 pages, the talk given at the IAU Colloquium 180 "Towards Models and Constants for Sub-Microarcsecond Astrometry", Washington DC, March 26 - April 2, 200

    Ultra-High Resolution Intensity Statistics of a Scintillating Source

    Full text link
    We derive the distribution of flux density of a compact source exhibiting strong diffractive scintillation. Our treatment accounts for arbitrary spectral averaging, spatially-extended source emission, and the possibility of intrinsic variability within the averaging time, as is typical for pulsars. We also derive the modulation index and present a technique for estimating the self-noise of the distribution, which can be used to identify amplitude variations on timescales shorter than the spectral accumulation time. Our results enable a for direct comparison with ultra-high resolution observations of pulsars, particularly single-pulse studies with Nyquist-limited resolution, and can be used to identify the spatial emission structure of individual pulses at a small fraction of the diffractive scale.Comment: 14 Pages, 4 Figures, accepted for publication in Ap

    Discovery of Substructure in the Scatter-Broadened Image of Sgr A*

    Full text link
    We have detected substructure within the smooth scattering disk of the celebrated Galactic Center radio source Sagittarius A* (SgrA*). We observed this structure at 1.3 cm wavelength with the Very Long Baseline Array together with the Green Bank Telescope, on baselines of up to 3000 km, long enough to completely resolve the average scattering disk. Such structure is predicted theoretically, as a consequence of refraction by large-scale plasma fluctuations in the interstellar medium. Along with the much-studied Ξd∝λ2\theta_\mathrm{d}\propto \lambda^2 scaling of angular broadening Ξd\theta_\mathrm{d} with observing wavelength λ\lambda, our observations indicate that the spectrum of interstellar turbulence is shallow, with an inner scale larger than 300 km. The substructure is consistent with an intrinsic size of about 1 mas at 1.3 cm wavelength, as inferred from deconvolution of the average scattering. Further observations of the substructure can set stronger constraints on the properties of scattering material and on the intrinsic size of SgrA*. These constraints will guide understanding of effects of scatter-broadening and emission physics of the black hole, in images with the Event Horizon Telescope at millimeter wavelengths.Comment: 5 pages, 5 figures, accepted by Astrophysical Journal Letters; minor corrections to the text and figures are introduce

    Size of the Vela Pulsar's Emission Region at 18 cm Wavelength

    Full text link
    We present measurements of the linear diameter of the emission region of the Vela pulsar at observing wavelength lambda=18 cm. We infer the diameter as a function of pulse phase from the distribution of visibility on the Mopra-Tidbinbilla baseline. As we demonstrate, in the presence of strong scintillation, finite size of the emission region produces a characteristic W-shaped signature in the projection of the visibility distribution onto the real axis. This modification involves heightened probability density near the mean amplitude, decreased probability to either side, and a return to the zero-size distribution beyond. We observe this signature with high statistical significance, as compared with the best-fitting zero-size model, in many regions of pulse phase. We find that the equivalent full width at half maximum of the pulsar's emission region decreases from more than 400 km early in the pulse to near zero at the peak of the pulse, and then increases again to approximately 800 km near the trailing edge. We discuss possible systematic effects, and compare our work with previous results

    Effects of Intermittent Emission: Noise Inventory for Scintillating Pulsar B0834+06

    Full text link
    We compare signal and noise for observations of the scintillating pulsar B0834+06, using very-long baseline interferometry and a single-dish spectrometer. Comparisons between instruments and with models suggest that amplitude variations of the pulsar strongly affect the amount and distribution of self-noise. We show that noise follows a quadratic polynomial with flux density, in spectral observations. Constant coefficients, indicative of background noise, agree well with expectation; whereas second-order coefficients, indicative of self-noise, are about 3 times values expected for a pulsar with constant on-pulse flux density. We show that variations in flux density during the 10-sec integration account for the discrepancy. In the secondary spectrum, about 97% of spectral power lies within the pulsar's typical scintillation bandwidth and timescale; an extended scintillation arc contains about 3%. For a pulsar with constant on-pulse flux density, noise in the dynamic spectrum will appear as a uniformly-distributed background in the secondary spectrum. We find that this uniform noise background contains 95% of noise in the dynamic spectrum for interferometric observations; but only 35% of noise in the dynamic spectrum for single-dish observations. Receiver and sky dominate noise for our interferometric observations, whereas self-noise dominates for single-dish. We suggest that intermittent emission by the pulsar, on timescales < 300 microseconds, concentrates self-noise near the origin in the secondary spectrum, by correlating noise over the dynamic spectrum. We suggest that intermittency sets fundamental limits on pulsar astrometry or timing. Accounting of noise may provide means for detection of intermittent sources, when effects of propagation are unknown or impractical to invert.Comment: 38 pages, 10 figure

    Electric field representation of pulsar intensity spectra

    Get PDF
    Pulsar dynamic spectra exhibit high visibility fringes arising from interference between scattered radio waves. These fringes may be random or highly ordered patterns, depending on the nature of the scattering or refraction. Here we consider the possibility of decomposing pulsar dynamic spectra -- which are intensity measurements -- into their constituent scattered waves, i.e. electric field components. We describe an iterative method of achieving this decomposition and show how the algorithm performs on data from the pulsar B0834+06. The match between model and observations is good, although not formally acceptable as a representation of the data. Scattered wave components derived in this way are immediately useful for qualitative insights into the scattering geometry. With some further development this approach can be put to a variety of uses, including: imaging the scattering and refracting structures in the interstellar medium; interstellar interferometric imaging of pulsars at very high angular resolution; and mitigating pulse arrival time fluctuations due to interstellar scattering.Comment: 7 Pages, 2 Figures, revised version, accepted by MNRA

    Correlation between X-ray Lightcurve Shape and Radio Arrival Time in the Vela Pulsar

    Get PDF
    We report the results of simultaneous observations of the Vela pulsar in X-rays and radio from the RXTE satellite and the Mount Pleasant Radio Observatory in Tasmania. We sought correlations between the Vela's X-ray emission and radio arrival times on a pulse by pulse basis. At a confidence level of 99.8% we have found significantly higher flux density in Vela's main X-ray peak during radio pulses that arrived early. This excess flux shifts to the 'trough' following the 2nd X-ray peak during radio pulses that arrive later. Our results suggest that the mechanism producing the radio pulses is intimately connected to the mechanism producing X-rays. Current models using resonant absorption of radio emission in the outer magnetosphere as a cause of the X-ray emission are explored as a possible explanation for the correlation.Comment: 6 pages, 5 figures, accepted by Ap
    • 

    corecore