740 research outputs found

    Effective interactions and equilibrium configurations of colloidal particles on a sessile droplet

    Full text link
    We study the free energy landscapes of a pair of submicron spherical particles floating at the surface of a sessile droplet. The particles are subjected to radial external forces resulting in a deformation of the droplet shape relative to the reference shape of a spherical cap. This deformation leads to tangential forces on the particles. For small deformations and for the contact angle θ0\theta_0 at the substrate being equal to π/2\pi/2, the corresponding linearized Young-Laplace equation is solved analytically. The solution is constructed by employing the method of images from electrostatics, where each of the particles plays the role of a capillary monopole and the substrate is replaced by a virtual drop with image charges and by imposing the conditions of fixed droplet volume and vanishing total force on the droplet. The substrate boundary conditions determine the signs of the image capillary charges and therefore also the strength of the tangential forces on the particles. In the cases of an arbitrary contact angle θ0\theta_0 these forces are calculated numerically by employing a finite element method to find the equilibrium shape of the droplet for those configurations in which the particles are close to the local free energy minima.Comment: 23 pages, 8 figure

    The short-time self-diffusion coefficient of a sphere in a suspension of rigid rods

    Full text link
    The short--time self diffusion coefficient of a sphere in a suspension of rigid rods is calculated in first order in the rod volume fraction. For low rod concentrations the correction to the Einstein diffusion constant of the sphere is a linear function of the rod volume fraction with the slope proportional to the equilibrium averaged mobility diminution trace of the sphere interacting with a single freely translating and rotating rod. The two--body hydrodynamic interactions are calculated using the so--called bead model in which the rod is replaced by a stiff linear chain of touching spheres. The interactions between spheres are calculated numerically using the multipole method. Also an analytical expression for the diffusion coefficient as a function of the rod aspect ratio is derived in the limit of very long rods. We show that in this limit the correction to the Einstein diffusion constant does not depend on the size of the tracer sphere. The higher order corrections depending on the applied model are computed numerically. An approximate expression is provided, valid for a wide range of aspect ratios.Comment: 11 pages, 6 figure

    Capillary interactions in Pickering emulsions

    Full text link
    The effective capillary interaction potentials for small colloidal particles trapped at the surface of liquid droplets are calculated analytically. Pair potentials between capillary monopoles and dipoles, corresponding to particles floating on a droplet with a fixed center of mass and subjected to external forces and torques, respectively, exhibit a repulsion at large angular separations and an attraction at smaller separations, with the latter resembling the typical behavior for flat interfaces. This change of character is not observed for quadrupoles, corresponding to free particles on a mechanically isolated droplet. The analytical results for quadrupoles are compared with the numerical minimization of the surface free energy of the droplet in the presence of ellipsoidal particles.Comment: twocolumn, 8 pages, 3 figures, submitted to Phys. Rev.

    Direct comparison of sterile neutrino constraints from cosmological data, νe\nu_{e} disappearance data and νμνe\nu_{\mu}\rightarrow\nu_{e} appearance data in a 3+13+1 model

    Get PDF
    We present a quantitative, direct comparison of constraints on sterile neutrinos derived from neutrino oscillation experiments and from Planck data, interpreted assuming standard cosmological evolution. We extend a 1+11+1 model, which is used to compare exclusions contours at the 95% CL derived from Planck data to those from νe\nu_{e}-disappearance measurements, to a 3+13+1 model. This allows us to compare the Planck constraints with those obtained through νμνe\nu_{\mu}\rightarrow\nu_{e} appearance searches, which are sensitive to more than one active-sterile mixing angle. We find that the cosmological data fully exclude the allowed regions published by the LSND, MiniBooNE and Neutrino-4 collaborations, and those from the gallium and rector anomalies, at the 95% CL. Compared to the exclusion regions from the Daya Bay νe\nu_{e}-disappearance search, the Planck data are more strongly excluding above Δm4120.1eV2|\Delta m^{2}_{41}|\approx 0.1\, \mathrm{eV}^{2} and meffsterile0.2eVm_\mathrm{eff}^\mathrm{sterile}\approx 0.2\, \mathrm{eV}, with the Daya Bay exclusion being stronger below these values. Compared to the combined Daya Bay/Bugey/MINOS exclusion region on νμνe\nu_{\mu}\rightarrow\nu_{e} appearance, the Planck data is more strongly excluding above Δm4125×102eV2\Delta m^{2}_{41}\approx 5\times 10^{-2}\,\mathrm{eV}^{2}, with the exclusion strengths of the Planck data and the Daya Bay/Bugey/MINOS combination becoming comparable below this value.Comment: 9 pages, 4 figures, accepted by Eur. Phys. J.

    Free energy of colloidal particles at the surface of sessile drops

    Full text link
    The influence of finite system size on the free energy of a spherical particle floating at the surface of a sessile droplet is studied both analytically and numerically. In the special case that the contact angle at the substrate equals π/2\pi/2 a capillary analogue of the method of images is applied in order to calculate small deformations of the droplet shape if an external force is applied to the particle. The type of boundary conditions for the droplet shape at the substrate determines the sign of the capillary monopole associated with the image particle. Therefore, the free energy of the particle, which is proportional to the interaction energy of the original particle with its image, can be of either sign, too. The analytic solutions, given by the Green's function of the capillary equation, are constructed such that the condition of the forces acting on the droplet being balanced and of the volume constraint are fulfilled. Besides the known phenomena of attraction of a particle to a free contact line and repulsion from a pinned one, we observe a local free energy minimum for the particle being located at the drop apex or at an intermediate angle, respectively. This peculiarity can be traced back to a non-monotonic behavior of the Green's function, which reflects the interplay between the deformations of the droplet shape and the volume constraint.Comment: 24 pages, 19 figure

    Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam

    Get PDF
    The SciBooNE Collaboration reports a measurement of inclusive charged current interactions of muon neutrinos on carbon with an average energy of 0.8 GeV using the Fermilab Booster Neutrino Beam. We compare our measurement with two neutrino interaction simulations: NEUT and NUANCE. The charged current interaction rates (product of flux and cross section) are extracted by fitting the muon kinematics, with a precision of 6-15% for the energy dependent and 3% for the energy integrated analyses. We also extract CC inclusive interaction cross sections from the observed rates, with a precision of 10-30% for the energy dependent and 8% for the energy integrated analyses. This is the first measurement of the CC inclusive cross section on carbon around 1 GeV. These results can be used to convert previous SciBooNE cross section ratio measurements to absolute cross section values.Comment: 21 pages, 16 figures. Accepted by Phys. Rev. D. Minor revisions to match the accepted versio
    corecore