Direct comparison of sterile neutrino constraints from cosmological data, νe\nu_{e} disappearance data and νμνe\nu_{\mu}\rightarrow\nu_{e} appearance data in a 3+13+1 model

Abstract

We present a quantitative, direct comparison of constraints on sterile neutrinos derived from neutrino oscillation experiments and from Planck data, interpreted assuming standard cosmological evolution. We extend a 1+11+1 model, which is used to compare exclusions contours at the 95% CL derived from Planck data to those from νe\nu_{e}-disappearance measurements, to a 3+13+1 model. This allows us to compare the Planck constraints with those obtained through νμνe\nu_{\mu}\rightarrow\nu_{e} appearance searches, which are sensitive to more than one active-sterile mixing angle. We find that the cosmological data fully exclude the allowed regions published by the LSND, MiniBooNE and Neutrino-4 collaborations, and those from the gallium and rector anomalies, at the 95% CL. Compared to the exclusion regions from the Daya Bay νe\nu_{e}-disappearance search, the Planck data are more strongly excluding above Δm4120.1eV2|\Delta m^{2}_{41}|\approx 0.1\, \mathrm{eV}^{2} and meffsterile0.2eVm_\mathrm{eff}^\mathrm{sterile}\approx 0.2\, \mathrm{eV}, with the Daya Bay exclusion being stronger below these values. Compared to the combined Daya Bay/Bugey/MINOS exclusion region on νμνe\nu_{\mu}\rightarrow\nu_{e} appearance, the Planck data is more strongly excluding above Δm4125×102eV2\Delta m^{2}_{41}\approx 5\times 10^{-2}\,\mathrm{eV}^{2}, with the exclusion strengths of the Planck data and the Daya Bay/Bugey/MINOS combination becoming comparable below this value.Comment: 9 pages, 4 figures, accepted by Eur. Phys. J.

    Similar works