38 research outputs found

    Surface-Confined Molecular Self-Assembly

    Get PDF

    Optical gap in herringbone and pi-stacked crystals of 1]benzothieno3,2-b]benzothiophene and its brominated derivative

    Get PDF
    The optical gap of the organic semiconductor 1]benzothieno3,2-b]benzothiophene and its 2,7-dibrominated analogue is measured in solution and in the crystalline state by means of UV-vis and emission spectroscopy. Bromination leads to a change in molecular packing from herringbone to pi-stacked, resulting in a marked shift in the absorption and emission spectra which is found to be in accordance with TDDFT calculations

    Soft-landing electrospray ion beam deposition of sensitive oligoynes on surfaces in vacuum

    Get PDF
    AbstractAdvances in synthetic chemistry permit the synthesis of large, highly functional, organic molecules. Characterizing the complex structure of such molecules with highly resolving, vacuum-based methods like scanning probe microscopy requires their transfer into the gas phase and further onto an atomically clean surface in ultrahigh vacuum without causing additional contamination. Conventionally this is done via sublimation in vacuum. However, similar to biological molecules, large synthetic compounds can be non-volatile and decompose upon heating. Soft-landing ion beam deposition using soft ionization methods represents an alternative approach to vacuum deposition. Using different oligoyne derivatives of the form of R1(CC)nR2, here we demonstrate that even sensitive molecules can be handled by soft-landing electrospray ion beam deposition. We generate intact molecular ions as well as fragment ions with intact hexayne parts and deposit them on clean metal surfaces. Scanning tunneling microscopy shows that the reactive hexayne segments of the molecules of six conjugated triple bonds are intact. The molecules agglomerate into ribbon-like islands, whose internal structure can be steered by the choice of the substituents. Our results suggest the use of ion beam deposition to arrange reactive precursors for subsequent polymerization reactions

    Short‐Range Structural Correlations in Amorphous 2D Polymers

    Get PDF
    Many 2D covalent polymers synthesized as single layers on surfaces show inherent disorder, expressed for example in their ring‐size distribution. Systems which are expected to form the thermodynamically favored hexagonal lattice usually deviate from crystallinity and include high numbers of pentagons, heptagons, and rings of other sizes. The amorphous structure of two different covalent polymers in real space using scanning tunneling microscopy is investigated. Molecular dynamics simulations are employed to extract additional information. We show that short‐range correlations exist in the structure of one polymer, i. e. that polygons are not tessellating the surface randomly but that ring neighborhoods have preferential compositions. The correlation is dictated by the energy of formation of the ring neighborhoods

    Electric-field-driven direct desulfurization

    Get PDF
    The ability to elucidate the elementary steps of a chemical reaction at the atomic scale is important for the detailed understanding of the processes involved, which is key to uncover avenues for improved reaction paths. Here, we track the chemical pathway of an irreversible direct desulfurization reaction of tetracenothiophene adsorbed on the Cu(111) closed-packed surface at the submolecular level. Using the precise control of the tip position in a scanning tunneling microscope and the electric field applied across the tunnel junction, the two carbon–sulfur bonds of a thiophene unit are successively cleaved. Comparison of spatially mapped molecular states close to the Fermi level of the metallic substrate acquired at each reaction step with density functional theory calculations reveals the two elementary steps of this reaction mechanism. The first reaction step is activated by an electric field larger than 2 V nm–1, practically in absence of tunneling electrons, opening the thiophene ring and leading to a transient intermediate. Subsequently, at the same threshold electric field and with simultaneous injection of electrons into the molecule, the exergonic detachment of the sulfur atom is triggered. Thus, a stable molecule with a bifurcated end is obtained, which is covalently bound to the metallic surface. The sulfur atom is expelled from the vicinity of the molecule.PostprintPeer reviewe

    Enhancing hydrogen evolution activity of Au(111) in alkaline media through molecular engineering of a 2D polymer

    Get PDF
    The electrochemical splitting of water holds promise for the storage of energy produced intermittently by renewable energy sources. The evolution of hydrogen currently relies on the use of platinum as a catalyst—which is scarce and expensive—and ongoing research is focused towards finding cheaper alternatives. In this context, 2D polymers grown as single layers on surfaces have emerged as porous materials with tunable chemical and electronic structures that can be used for improving the catalytic activity of metal surfaces. Here, we use designed organic molecules to fabricate covalent 2D architectures by an Ullmann-type coupling reaction on Au(111). The polymer-patterned gold electrode exhibits a hydrogen evolution reaction activity up to three times higher than that of bare gold. Through rational design of the polymer on the molecular level we engineered hydrogen evolution activity by an approach that can be easily extended to other electrocatalytic reactions.Fil: Alexa, Patrick. Max Planck Institute for Solid State Research; AlemaniaFil: Lombardi, Juan Manuel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Rosario. Instituto de FĂ­sica de Rosario. Universidad Nacional de Rosario. Instituto de FĂ­sica de Rosario; ArgentinaFil: Abufager, Paula Natalia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Rosario. Instituto de FĂ­sica de Rosario. Universidad Nacional de Rosario. Instituto de FĂ­sica de Rosario; ArgentinaFil: Busnengo, Heriberto Fabio. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Rosario. Instituto de FĂ­sica de Rosario. Universidad Nacional de Rosario. Instituto de FĂ­sica de Rosario; ArgentinaFil: Grumelli, Doris Elda. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones FisicoquĂ­micas TeĂłricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones FisicoquĂ­micas TeĂłricas y Aplicadas; ArgentinaFil: Vyas, Vijay S.. Max Planck Institute for Solid State Research; Alemania. Marquette University; Estados UnidosFil: Haase, Frederik. Max Planck Institute for Solid State Research; Alemania. Kyoto University. Institute for Integrated Cell-Material Sciences; JapĂłnFil: Lotsch, Bettina V.. Max Planck Institute for Solid State Research; Alemania. University of Munich. Department of Chemistry; AlemaniaFil: Gutzler, Rico. Max Planck Institute for Solid State Research; AlemaniaFil: Kern, Klaus. Max Planck Institute for Solid State Research; Alemania. École Polytechnique FĂ©dĂ©rale de Lausanne; Suiz

    On-surface transmetalation of metalloporphyrins

    Get PDF
    Increasing the complexity of 2D metal-organic networks has led to the fabrication of structures with interesting magnetic and catalytic properties. However, increasing complexity by providing different coordination environments for different metal types imposes limitations on their synthesis if the controlled placement of one metal type into one coordination environment is desired. Whereas metal insertion into free-base porphyrins at the vacuum/solid interface has been thoroughly studied, providing detailed insight into the mechanisms at play, the chemical interaction of a metal atom with a metallated porphyrin is rarely investigated. Herein, the breadth of metalation reactions is augmented towards the metal exchange of a metalloporphyrin through the deliberate addition of atomic metal centers. The cation of Fe(ii)-tetraphenylporphyrins can be replaced by Co in a redox transmetalation-like reaction on a Au(111) surface. Likewise, Cu can be replaced by Co. The reverse reaction does not occur, i.e. Fe does not replace Co in the porphyrin. This non-reversible exchange is investigated in detail by X-ray absorption spectroscopy complemented by scanning tunneling microscopy. Density functional theory illuminates possible reaction pathways and leads to the conclusion that the transmetalation proceeds through the adsorption of initially metallic (neutral) Co onto the porphyrin and the expulsion of Fe towards the surface accompanied by Co insertion. Our findings have important implications for the fabrication of porphyrin layers on surfaces when subject to the additional deposition of metals. Mixed-metal porphyrin layers can be fabricated by design in a solvent-free process, but conversely care must be taken that the transmetalation does not proceed as an undesired side reaction.Fil: Hötger, Diana. Max Planck Institute for Solid State Research; AlemaniaFil: Abufager, Paula Natalia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Rosario. Instituto de FĂ­sica de Rosario. Universidad Nacional de Rosario. Instituto de FĂ­sica de Rosario; ArgentinaFil: Morchutt, Claudius. Max Planck Institute for Solid State Research; Alemania. École Polytechnique FĂ©dĂ©rale de Lausanne; SuizaFil: Alexa, Patrick. Max Planck Institute for Solid State Research; AlemaniaFil: Grumelli, Doris Elda. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones FisicoquĂ­micas TeĂłricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones FisicoquĂ­micas TeĂłricas y Aplicadas; ArgentinaFil: Dreiser, Jan. Paul Scherrer Institute; SuizaFil: Stepanow, Sebastian. ETH ZĂŒrich; SuizaFil: Gambardella, Pietro. ETH ZĂŒrich; SuizaFil: Busnengo, Heriberto Fabio. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Rosario. Instituto de FĂ­sica de Rosario. Universidad Nacional de Rosario. Instituto de FĂ­sica de Rosario; ArgentinaFil: Etzkorn, Markus. Max Planck Institute for Solid State Research; AlemaniaFil: Gutzler, Rico. Max Planck Institute for Solid State Research; AlemaniaFil: Kern, Klaus. Max Planck Institute for Solid State Research; Alemania. École Polytechnique FĂ©dĂ©rale de Lausanne; Suiz

    On-surface transmetalation of metalloporphyrins

    Get PDF
    Increasing the complexity of 2D metal-organic networks has led to the fabrication of structures with interesting magnetic and catalytic properties. However, increasing complexity by providing different coordination environments for different metal types imposes limitations on their synthesis if the controlled placement of one metal type into one coordination environment is desired. Whereas metal insertion into free-base porphyrins at the vacuum/solid interface has been thoroughly studied, providing detailed insight into the mechanisms at play, the chemical interaction of a metal atom with a metallated porphyrin is rarely investigated. Herein, the breadth of metalation reactions is augmented towards the metal exchange of a metalloporphyrin through the deliberate addition of atomic metal centers. The cation of Fe(ii)-tetraphenylporphyrins can be replaced by Co in a redox transmetalation-like reaction on a Au(111) surface. Likewise, Cu can be replaced by Co. The reverse reaction does not occur, i.e. Fe does not replace Co in the porphyrin. This non-reversible exchange is investigated in detail by X-ray absorption spectroscopy complemented by scanning tunneling microscopy. Density functional theory illuminates possible reaction pathways and leads to the conclusion that the transmetalation proceeds through the adsorption of initially metallic (neutral) Co onto the porphyrin and the expulsion of Fe towards the surface accompanied by Co insertion. Our findings have important implications for the fabrication of porphyrin layers on surfaces when subject to the additional deposition of metals. Mixed-metal porphyrin layers can be fabricated by design in a solvent-free process, but conversely care must be taken that the transmetalation does not proceed as an undesired side reaction.Instituto de Investigaciones FisicoquĂ­micas TeĂłricas y Aplicada

    On-surface transmetalation of metalloporphyrins

    Get PDF
    Increasing the complexity of 2D metal-organic networks has led to the fabrication of structures with interesting magnetic and catalytic properties. However, increasing complexity by providing different coordination environments for different metal types imposes limitations on their synthesis if the controlled placement of one metal type into one coordination environment is desired. Whereas metal insertion into free-base porphyrins at the vacuum/solid interface has been thoroughly studied, providing detailed insight into the mechanisms at play, the chemical interaction of a metal atom with a metallated porphyrin is rarely investigated. Herein, the breadth of metalation reactions is augmented towards the metal exchange of a metalloporphyrin through the deliberate addition of atomic metal centers. The cation of Fe(ii)-tetraphenylporphyrins can be replaced by Co in a redox transmetalation-like reaction on a Au(111) surface. Likewise, Cu can be replaced by Co. The reverse reaction does not occur, i.e. Fe does not replace Co in the porphyrin. This non-reversible exchange is investigated in detail by X-ray absorption spectroscopy complemented by scanning tunneling microscopy. Density functional theory illuminates possible reaction pathways and leads to the conclusion that the transmetalation proceeds through the adsorption of initially metallic (neutral) Co onto the porphyrin and the expulsion of Fe towards the surface accompanied by Co insertion. Our findings have important implications for the fabrication of porphyrin layers on surfaces when subject to the additional deposition of metals. Mixed-metal porphyrin layers can be fabricated by design in a solvent-free process, but conversely care must be taken that the transmetalation does not proceed as an undesired side reaction.Instituto de Investigaciones FisicoquĂ­micas TeĂłricas y Aplicada

    π‑Electron Conjugation in Two Dimensions

    No full text
    Organic oligomers and polymers with extended π-conjugation are the fundamental building blocks of organic electronic devices. Novel routes are being explored to create tailor-made organic materials, and recent progress in organic chemistry and surface chemistry has led to the synthesis of planar 2D polymers. Here we show how extending π-conjugation in the second dimension leads to novel materials with HOMO–LUMO gaps smaller than in 1D polymers built from the same parent molecular repeat unit. Density functional theory calculations on <i>experimentally realized</i> 2D polymers grant insight into HOMO–LUMO gap contraction with increasing oligomer size and show fundamental differences between 1D and 2D “band gap engineering”. We discuss how the effects of cross-conjugation and dihedral twists affect the electronic gaps
    corecore