20 research outputs found

    No mycorrhizae on Schoenoplectus maritimus in the Camargue

    Get PDF
    It has been thought for a long time that wetland plants were devoid of mycorrhizae. In recent years, however, an increasing number of studies have reported the presence of vesicular-arbuscular mycorrhizae (or endomycorrhizae) on several marsh plants. These fungi are often beneficial for their hosts enhancing growth through better mineral and water nutrition as well as photosynthetic activity. Giving the importance of endomycorrhizae on resource allocation, we sought to determine whether these structures were present on S. maritimus growing in southern France. We sampled roots of 25 tubers collected at 5 sampling stations in 2 marshes for a total of 250 roots. Roots were stained and observed under a light microscope (400 X). No fungal structures (hyphae, vesicles, arbuscles, or spores) were observed on S. maritimus roots

    Source–sink imbalance increases with growth temperature in the spring geophyte Erythronium americanum

    Get PDF
    Spring geophytes produce larger storage organs and present delayed leaf senescence under lower growth temperature. Bulb and leaf carbon metabolism were investigated in Erythronium americanum to identify some of the mechanisms that permit this improved growth at low temperature. Plants were grown under three day/night temperature regimes: 18/14 °C, 12/8 °C, and 8/6 °C. Starch accumulated more slowly in the bulb at lower temperatures probably due to the combination of lower net photosynthetic rate and activation of a ‘futile cycle’ of sucrose synthesis and degradation. Furthermore, bulb cell maturation was delayed at lower temperatures, potentially due to the delayed activation of sucrose synthase leading to a greater sink capacity. Faster starch accumulation and the smaller sink capacity that developed at higher temperatures led to early starch saturation of the bulb. Thereafter, soluble sugars started to accumulate in both leaf and bulb, most probably inducing decreases in fructose-1,6-bisphosphatase activity, triose-phosphate utilization in the leaf, and the induction of leaf senescence. Longer leaf life span and larger bulbs at lower temperature appear to be due to an improved equilibrium between carbon fixation capacity and sink strength, thereby allowing the plant to sustain growth for a longer period of time before feedback inhibition induces leaf senescence

    Modulation de la force des sources et des puits de carbone sur la croissance du bulbe de l'érythrone d'Amérique, Erythronium americanum

    Get PDF
    La chute de luminositĂ© ainsi que l’augmentation saisonniĂšre des tempĂ©ratures sont considĂ©rĂ©es comme les principaux agents induisant la sĂ©nescence des feuilles chez les plantes Ă©phĂ©mĂšres printaniĂšres des forĂȘts dĂ©cidues. Cependant ces deux facteurs n’expliquent pas directement les variations interannuelles de croissance de l’organe souterrain. Nous suggĂ©rons que la longĂ©vitĂ© des feuilles des gĂ©ophytes printaniĂšres serait dĂ©terminĂ©e par les conditions de stockage des sucres de rĂ©serve (taille de/durĂ©e de croissance de l'organe pĂ©renne, vitesse de stockage) et non que la durĂ©e de vie des feuilles dĂ©terminerait la taille de l’organe pĂ©renne. Nos rĂ©sultats chez Erythronium americanum suggĂšrent une entrĂ©e en sĂ©nescence prĂ©maturĂ©e de la feuille aux tempĂ©ratures Ă©levĂ©es lorsque les plantes sont cultivĂ©es Ă  12/8°C ou 18/14°C ; lorsque le bulbe arrĂȘte de croĂźtre, la feuille est encore photosynthĂ©tiquement active et la concentration en nutriments Ă©levĂ©e, signifiant une remobilisation non achevĂ©e des nutriments. L'enrichissement de l'air en CO2 augmente l'assimilation nette des plantes, mais n'accĂ©lĂšre pas la croissance du bulbe, et donc pas l’accumulation des sucres. La force d’un puits de carbone tel que le bulbe pourrait influencer la longĂ©vitĂ© de la feuille chez les individus immatures de cette espĂšce.Reduction in light intensity as well as seasonal increase in temperature are considered the main factors inducing the senescence of the leaves of deciduous forest spring ephemerals. However, these two factors cannot completely explain the interannual variations in belowground organ growth. We suggest that leaf longevity of spring geophytes is determined by carbohydrate storage conditions (size and growth duration of the perennial organ, storage duration) and not that leaf lifespan determine the size of the perennial organ. Our results on Erythronium americanum suggest that leaf senescence appears prematurely under the higher temperature regime when plants are cultivated at 12/8°C or 18/14°C; when the bulb stops to grow, the leaf is still photosynthetically active and the nutrient concentration is high, meaning their mobilisation is not achieved. CO2 air enrichment increases plant net assimilation rate but does not increase bulb growth rate, and thus does not enhance carbohydrate storage. The strength of a sink of carbon such as the bulb might influence leaf longevity in single-leaved individuals of this species

    Analysis of useful morphogenetic and biochemical traits for the development of dual-purpose “grain-bioethanol” sweet sorghums

    No full text
    Dans l'optique de produire des agro‐carburants, le sorgho sucrĂ© est aujourd'hui proposĂ© comme une alternative Ă  d'autres espĂšces cultivĂ©es Ă  grande Ă©chelle comme la canne Ă  sucre et le maĂŻs car il prĂ©sente plusieurs avantages : le sorgho est rĂ©sistant Ă  la sĂ©cheresse et Ă  la chaleur, il nĂ©cessite peu d'intrants, a en moyenne un cycle de culture relativement court (3‐4 mois) comparĂ© Ă  la canne Ă  sucre. Il offre une grande diversitĂ© gĂ©nĂ©tique Ă  explorer et exploiter, tout en Ă©tant gĂ©nĂ©tiquement moins complexe que la canne Ă  sucre. Finalement, il peut ĂȘtre cultivĂ© pour un double usage, le grain pouvant ĂȘtre utilisĂ© comme source d'alimentation pour l'homme ou le bĂ©tail (Ă  partir du grain) et le jus sucrĂ© contenu par les tiges comme source d'agrocarburant. Cette polyvalence en fait une culture idĂ©ale pour lutter contre la compĂ©tition entre cultures Ă©nergĂ©tiques et cultures vivriĂšres et assurer des rendements dans des environnements de culture sujets au stress hydrique et thermique comme c'est le cas en Afrique de l'Ouest. Cependant, le caractĂšre sucrĂ© du sorgho est complexe, car sous l'influence d'interactions GĂ©notype X Environnement (GxE). Aussi, les mĂ©canismes mĂ©taboliques, morphologiques ou phĂ©nologiques constituant la cinĂ©tique d'accumulation des glucides dans la tige et son Ă©ventuelle compĂ©tition avec le remplissage des grains restent mal connus ou trĂšs controversĂ©s dans la littĂ©rature. La prĂ©sente thĂšse, rĂ©alisĂ©e dans le cadre du projet europĂ©en Sweetfuel, vise Ă  comprendre ces mĂ©canismes, afin de contribuer Ă  la dĂ©finition d'idĂ©otypes de sorgho double usage, pour les environnements soudano‐sahĂ©liens.Sur la base d'Ă©tudes expĂ©rimentales au champ au Mali et en serre en France, il a pu ĂȘtre dĂ©montrĂ© que les glucides sont accumulĂ©s dans les entrenoeuds des tiges par un jeu d'activitĂ©s enzymatiques (favorisant l'accumulation d'hexoses puis de saccharose) dĂšs le dĂ©but de leur Ă©longation, donc potentiellement avant la floraison. Au Mali, l'Ă©tude au champ de 14 gĂ©notypes adaptĂ©s aux conditions locales, plus ou moins sensibles Ă  la photopĂ©riode et semĂ©s Ă  trois dates diffĂ©rentes, a dĂ©montrĂ© le bĂ©nĂ©fice d'un rallongement de la phase vĂ©gĂ©tative sur la quantitĂ© de sucre accumulĂ©e dans les tiges de la plante Ă  floraison, du fait d'un plus grand nombre d'entrenoeuds allongĂ©s et du temps Ă  leur disposition pour accumuler des glucides avant ce stade. Ce bĂ©nĂ©fice Ă©tait cependant plus liĂ© Ă  la plus grande quantitĂ© de biomasse accumulĂ©e (taille des tiges) qu'Ă  la concentration en sucre dans les entrenoeuds (plutĂŽt stable entre dates de semis).Ainsi, la durĂ©e de la phase vĂ©gĂ©tative et la sensibilitĂ© Ă  la photopĂ©riode sont proposĂ©s comme des paramĂštres clĂ©s favorisant la quantitĂ© de glucides accumulĂ©e dans les tiges de la plante Ă  floraison. D'autre part, il a Ă©tĂ© montrĂ© que la quantitĂ© de glucides prĂ©sente Ă  maturitĂ© dans les tiges des mĂȘmes gĂ©notypes ne diffĂ©rait pas ou peu de celle Ă  floraison, une Ă©ventuelle rĂ©duction pour quelques gĂ©notypes n'Ă©tant gĂ©nĂ©ralement pas significative et Ă©vitable par l'allongement du cycle. De plus, cette quantitĂ© de glucides dans les tiges Ă  maturitĂ© n'a tirĂ© aucun bĂ©nĂ©fice de l'ablation de la panicule Ă  floraison chez les mĂȘmes gĂ©notypes. Ces rĂ©sultats suggĂšrent que la compĂ©tition entre le remplissage du grain et la production de sucre est faible chez le sorgho, d'autant plus faible que la plante prĂ©sente de grandes tiges et donc un grand compartiment de stockage des glucides, tamponnant cette Ă©ventuelle compĂ©tition. D'ailleurs, Ă  une Ă©chelle plus fine, aucune diffĂ©rence n'a pu ĂȘtre mise en Ă©vidence en termes d'activitĂ© des principales enzymes du mĂ©tabolisme carbonĂ© dans la tige d'un gĂ©notype dans sa version stĂ©rile (pas de remplissage du grain) et fertile.Ce travail a dĂ©montrĂ© le potentiel du sorgho pour une double utilisation dans un contexte soudano‐sahĂ©lien et la pertinence d'exploiter la diversitĂ© gĂ©nĂ©tique de cette espĂšce pour cette objectif de sĂ©lection. Les rĂ©sultats obSweet sorghum offers many advantages as an alternative to widely cultivated crops such as corn and sugarcane to produce biofuels: it is resistant to water stress, it requires few inputs; it has a shorter growth cycle compared to sugarcane in particular. Sorghum also exhibits a great genetic diversity and is genetically less complex than sugarcane. Finally, sorghum can be cultivated for dual‐purpose uses, using grains for food or feed and sweet juice for biofuel production. Hence, sorghum is a promising option to reduce the competition for land and (water) resource use between food and fuel, in particular in cropping environments with high drought and heat stress frequency, as in West Africa. However, stem sweetness is a complex trait prone to genotype x environment interactions (GxE). The metabolic, morphological and phenological mechanisms involved in the kinetic of stem sugar accumulation and its possible competition with grain filling are largely unknown or controversial in the literature. The present work is part of the European project Sweetfuel and aims at better understanding these mechanisms and contributing to define dual‐purpose sorghum ideotypes for soudano‐sahelian conditions.Based on field and greenhouse experiments respectively in Mali and France, it was found that sugars start accumulating in stem internodes at the onset of their elongation, i.e. potentially soon before the plant flowers. The successive accumulation of hexose and then sucrose in internodes could be dynamically explained by changes in the activity of key enzymes related to sucrose metabolism. In Mali, a field experiment performed on 14 genotypes, contrasted for photoperiod sensitivity and sown at three planting dates, highlighted the interest of increasing vegetative phase duration to increase sugar yield. This was explained first of all by the higher number of internodes that could expand during a longer vegetative phase, and thus, by the higher production of stem biomass, and, to a minor extent, by the longer time for internodes to mature and accumulate sugar (sugar concentration in the stem was however fairly stable across sowing dates). Also, vegetative phase duration and photoperiod sensitivity can be considered as two key parameters promoting stem sugar content before grain filling. In the same time, it was shown that stem sugar content kept remarkably constant between anthesis and maturity in most of studied genotypes and that the reduction observed for some genotypes was overcome with an early sowing. Moreover, sugar accumulation in the stem between flowering and maturity did not benefit from panicle pruning. These results together suggest that the competition for carbohydrates between stem sugar reserves and grain filling is weak; it is even weaker for big/large stem genotypes with huge sugar reserves in the stem that would buffer a post‐flowering allocation of sugar from the stem to the grains if required. This low competition was confirmed at a finer scale, as no differences were observed in the activity of key enzymes of sucrose metabolism between the sterile and the fertile line of a same genotype.This work demonstrates the potential of sorghum for dual‐purpose in particular for soudano‐sahelian cropping conditions and the interest of using its genetic diversity for this breeding purpose. It provides further knowledge for revisiting the phenotyping strategies to be adopted to investigate the genetic basis of sugar and grain production and their combination. The results are also currently used to improve the way the source‐sink relationships underlying this dual production are formalized in crop and plant models at CIRAD. Such models will be then useful to assist sorghum ideotype exploration for dual purpose
    corecore