9 research outputs found

    Desarrollo de catalizadores de cobalto polinucleares y multifuncionales para la activación de moléculas pequeñas

    Full text link
    [ES] La presente tesis doctoral se enmarca en el ámbito de la Química Sostenible, en el cual se identifica la catálisis como una de las herramientas más importantes para su aplicación. En este sentido, en esta tesis doctoral, se han desarrollado catalizadores de cobalto para llevar a cabo reacciones de interés industrial o relacionadas con las tecnologías energéticas emergentes a través de la activación de moléculas pequeñas. Estas reacciones se llevan a cabo a nivel industrial con catalizadores basados en metales nobles o en condiciones de reacción severas. El objetivo es reemplazar estos catalizadores por otros basados en metales más abundantes en la corteza terrestre, en este caso el cobalto, o llevar a cabo las reacciones en condiciones de reacción más suaves, respectivamente, estudiando en todo caso la relación entre la estructura y la actividad del catalizador. Los resultados de esta tesis doctoral se presentan en cuatro capítulos. En el capítulo cuatro, se presentan los resultados del desarrollo de catalizadores de cobalto estables al aire y a la humedad basados en compuestos de coordinación para llevar a cabo la hidrosililación de alquenos sin aditivos y evitando el uso de atmósfera inerte durante la reacción. Además, se ha estudiado la actividad de estos catalizadores usando un amplio rango tanto de alquenos como de silanos para comprobar la generalidad de la reacción. Finalmente, se ha estudiado el mecanismo de reacción usando Raman in-situ, lo cual ha permitido identificar la especie de cobalto activa como intermedio de reacción. En el capítulo cinco, uno de los compuestos de coordinación estudiados para el proceso de hidrosililación de alquenos, se ha heterogeneizado usando como soporte un carbón activo de alta área superficial. La presencia de 6 nitrógenos coordinados al cobalto en el precursor inicial ha sido clave en la formación del material final, que es altamente activo y selectivo en la reacción de hidrogenación de nitroarenos y en la síntesis de aminas secundarias y de isoindolinonas en reacciones tándem en condiciones de reacción más suaves que las reportadas en bibliografía y usando agua como medio de reacción. Además, este catalizador puede ser reusado en varios ciclos de reacción sin una pérdida apreciable de actividad, demostrando que es un material heterogéneo y robusto. La estructura del catalizador se ha estudiado por varias técnicas de caracterización avanzadas, con el fin de correlacionar su estructura con la actividad en estas reacciones catalíticas. En el sexto capítulo se resumen los resultados obtenidos para el desarrollo de una familia de compuestos tetranucleares de cobalto, cuya densidad electrónica puede ser modulada haciendo uso de diferentes ligandos. Esta densidad electrónica está correlacionada con su actividad catalítica en reacciones de oxidación, como la oxidación de ciclohexano a ciclohexanol y ciclohexanona. En este sentido, se ha llevado a cabo un amplio estudio de la actividad catalítica de esta familia de catalizadores, que han demostrado ser activos y selectivos en esta reacción, en condiciones netas y usando aire empobrecido como oxidante, y del mecanismo de reacción a través de EPR y Raman, que ha permitido correlacionar la estructura de cada catalizador con su papel en cada proceso individual del mecanismo global de esta reacción. Finalmente, en el capítulo siete, uno de los compuestos tetranucleares de cobalto se ha utilizado como precursor en la síntesis de MOFs con ligandos ampliamente utilizados en la síntesis de estos materiales, como son el H3BTC y el H2bda, obteniéndose dos MOFs nuevos, el primero de ellos (Co2-MOF) basado en dos SBUs de cobalto dinucleares en la que una de ellas presenta tres posiciones de coordinación libres, con las ventajas que esto conlleva y, el segundo de ellos (2D-Co-MOF), basado en nanoláminas dobles apiladas por interacciones π-π stacking entre los ligandos piridina axiales. La dispersión de estos MOFs en Nafion da como resultado los correspondientes composites, que presentan una buena adherencia a los electrodos de grafito, una alta estabilidad a largo plazo y, además, un elevado rendimiento electrocatalítico para la reacción de oxidación del agua en medio neutro, mejorando los resultados reportados en bibliografía para materiales similares. Además, se ha estudiado el mecanismo de reacción, que sigue sin conocerse a ciencia cierta hoy en día, para el 2D-Co-MOF, basándonos en su topología particular y en estudios espectroscópicos y electroquímicos.[CA] La present tesi doctoral s'emmarca en l'àmbit de la Química Sostenible, en el qual s'identifica la catàlisi com una de les eines més importants per a la seua aplicació. En aquest sentit, en aquesta tesi doctoral, s'han desenvolupat catalitzadors de cobalt per a dur a terme reaccions d'interés industrial o relacionades amb les tecnologies energètiques emergents a través de l'activació de molècules xicotetes. Aquestes reaccions es duen a terme a nivell industrial amb catalitzadors basats en metalls nobles o en condicions de reacció severes. L'objectiu és reemplaçar aquests catalitzadors per altres basats en metalls més abundants en l'escorça terrestre, en aquest cas el cobalt, o dur a terme les reaccions en condicions de reacció més suaus, respectivament, estudiant en tot cas la relació entre l'estructura i l'activitat del catalitzador. Els resultats d'aquesta tesi doctoral es presenten en quatre capítols. En el quart capítol, es presenten els resultats del desenvolupament de catalitzadors de cobalt estables a l'aire i a la humitat basats en compostos de coordinació per a dur a terme la hidrosililació d'alquens sense additius i evitant l'ús d'atmosfera inerta durant la reacció. A més, s'ha estudiat l'activitat d'aquests catalitzadors usant un ampli rang tant d'alquens com de silanes per a comprovar la generalitat de la reacció. Finalment, s'ha estudiat el mecanisme de reacció usant Raman in-situ, la qual cosa ha permés identificar l'espècie de cobalt activa com a intermedi de reacció. En el quint capítol, un dels compostos de coordinació estudiats per al procés de hidrosililació d'alquens, s'ha heterogeneït usant com a suport un carbó actiu d'alta àrea. La presència de 6 nitrògens coordinats al cobalt en el precursor inicial ha sigut clau en la formació del material final, que és altament actiu i selectiu en la reacció d'hidrogenació de nitroarenos i en la síntesi d'amines secundàries i de isoindolinons en reaccions tàndem en condicions de reacció més suaus que les reportades en bibliografia i usant aigua com a mitjà de reacció. A més, aquest catalitzador pot ser reusat en diversos cicles de reacció sense una pèrdua apreciable d'activitat, demostrant que és un material heterogeni i robust. L'estructura del catalitzador s'ha estudiat per diverses tècniques de caracterització avançades, amb la finalitat de correlacionar la seua estructura amb l'activitat en aquestes reaccions catalítiques. En el capítol sis es resumeixen els resultats obtinguts per al desenvolupament d'una família de compostos tetranuclears de cobalt, la densitat electrònica del qual pot ser modulada fent ús de diferents lligands. Aquesta densitat electrònica està correlacionada amb la seua activitat catalítica en reaccions d'oxidació, com l'oxidació de ciclohexà a ciclohexanol i ciclohexanona. En aquest sentit, s'ha dut a terme un ampli estudi de l'activitat catalítica d'aquesta família de catalitzadors, que han demostrat ser actius i selectius en aquesta reacció, en condicions netes i usant aire empobrit com a oxidant, i del mecanisme de reacció a través de EPR i Raman, que ha permés correlacionar l'estructura de cada catalitzador amb el seu paper en cada procés individual del mecanisme global d'aquesta reacció. Finalment, en el sèptim capítol, un dels compostos tetranuclears de cobalt s'ha utilitzat com a precursor en la síntesi de MOFs amb lligands àmpliament utilitzats en la síntesi d'aquests materials, com són l'H3BTC i el H2bda, obtenint-se dos MOFs nous. El primer d'ells (Co2-MOF) basat en dos SBUs de cobalt dinuclears en la qual una d'elles presenta tres posicions de coordinació lliures, amb els avantatges que això comporta. El segon (2D-Co-MOF), basat en nanolámines per interaccions π-π stacking entre els lligands piridina axials. La dispersió d'aquests MOFs en Nafion dona com a resultat els corresponents composites, que presenten una bona adherència als elèctrodes de grafit, una alta estabilitat a llarg termini i, a més, un elevat rendiment electrocatalític per a la reacció d'oxidació de l'aigua al mig neutre, millorant els resultats reportats en bibliografia per a materials similars. A més, s'ha estudiat el mecanisme de reacció, que segueix sense conéixer-se amb certesa hui dia, per al 2D-Co-MOF, basant-nos en la seua topologia particular i en estudis espectroscòpics i electroquímics.[EN] This thesis is focused on the field of Green Chemistry, in which catalysis is identified as one of the most important tools for its application. In this sense, in this thesis, cobalt catalysts were developed to carry out reactions of industrial interest or related to emerging energy technologies, through the activation of small molecules. These reactions are usually performed at industrial scale with catalysts based on noble metals or under severe reaction conditions. The main objective of this thesis is to replace these catalysts by others based on more abundant metals in the earth's crust, in this case cobalt, or to carry out the reactions in milder reaction conditions, respectively, studying in each case the relationship between the structure and the activity of the catalyst. The results of this thesis are presented in four chapters. In the first chapter, the results for the catalytic hydrosilylation of alkenes under aerobic conditions and without dry solvents or additives are presented, where the development of air-stable cobalt-aquo complexes is pivotal. In fact, this is the first case where these reactions are performed under aerobic conditions with first-row transition metal complexes. In addition, the activity of these catalysts has been studied using a wide range of both alkenes and silanes to check the scope of the reaction. Finally, the reaction mechanism has been studied using in-situ Raman, which has allowed the identification of the active cobalt species as a reaction intermediate. In the second chapter, one of the coordination compounds studied for the alkene hydrosilylation process has been heterogenized using an activated carbon with high area as support. The employment of a suitable molecular complex consisting of six bounds N-Co as initial precursor has been key in the formation of the final material. This catalyst has demonstrated to be highly active and selective in the hydrogenation of nitroarenes and in the synthesis of secondary amines and isoindolinones in tandem reactions under milder reaction conditions than those reported in the literature and using water as reaction medium. Moreover, this catalyst can be reused in several reaction cycles without an appreciable loss of activity. The structure of the catalyst has been studied by several advanced characterization techniques in order to correlate its structure with the activity in these catalytic reactions. In the third chapter, the results obtained for the development of a family of tetranuclear cobalt compounds, whose electron density is modulated by using different ligands, are summarized. This electron density is correlated with their catalytic activity in the oxidation of cyclohexane to cyclohexanol and cyclohexanone. In this sense, an extensive study of the catalytic activity of this family of catalysts, which have been shown to be active and selective in this reaction, has been carried out under neat conditions and using depleted air as oxidant. Moreover, the reaction mechanism has been studied through EPR and Raman, which has allowed to correlate the structure of each catalyst with its role in each individual step of the global mechanism of this reaction. Finally, in the fourth chapter, one of the tetranuclear cobalt compounds has been used as precursor in the synthesis of MOFs with ligands widely used in the synthesis of these materials, such as H3BTC and H2bda, obtaining two new MOFs. The first one (Co2-MOF) based on two dinuclear cobalt SBUs in which one of them presents three free coordination positions, with the advantages that this entails and, the second one (2D-Co-MOF), based on double nanolayers stacked by π-π stacking interactions between the axial pyridine ligands. The dispersion of these MOFs in Nafion results in the corresponding composites, which exhibit good adherence to graphite electrodes, high long-term stability and, in addition, high electrocatalytic performance for the water oxidation reaction (OER) in neutral media, improving the results reported in literature for similar materials. Furthermore, the reaction mechanism, which is still unresolved, has been studied for 2D-Co-MOF, based on its particular topology and on spectroscopic and electrochemical studies.Gutiérrez Tarriño, S. (2021). Desarrollo de catalizadores de cobalto polinucleares y multifuncionales para la activación de moléculas pequeñas [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17232

    Cobalt nanoclusters coated with N-doped carbon for chemoselective nitroarene hydrogenation and tandem reactions in water

    Full text link
    [EN] The development of active and selective non-noble metal-based catalysts for the chemoselective reduction of nitro compounds in aquo media under mild conditions is an attractive research area. Herein, the synthesis of subnanometric and stable cobalt nanoclusters, covered by N-doped carbon layers as core shell (CoaNC-800), for the chemoselective reduction of nitroarenes is reported. The Co@NC-800 catalyst was prepared by the pyrolysis of the Co(tpy)(2) complex impregnated on Vulcan carbon. In fact, the use of a molecular complex based on six N-Co bonds drives the formation of a well-defined and distributed cobalt core-shell nanocluster covered by N-doped carbon layers. In order to elucidate its nature, it has been fully characterized by using several advanced techniques. in addition, this as-prepared catalyst showed high activity, chemoselectivity and stability toward the reduction of nitro compounds with H-2 and under mild reaction conditions; water was used as a green solvent, improving the previous results based on cobalt catalysts. Moreover, the Co@NC-800 catalyst is also active and selective for the one-pot synthesis of secondary aryl amines and isoindolinones through the reductive amination of nitroarenes. Finally, based on diffraction and spectroscopic studies, metallic cobalt nanoclusters with surface CoNx patches have been proposed as the active phase in the Co@NC-800 material.The authors acknowledge the financial support from the Spanish Government (RTI2018-096399-A-I00) and the Program Severo Ochoa SEV-2016-0683. S. G. T. is thankful to MINECO for her FPU Ph.D. contract FPU16/02117. P. O.-B. is thankful to MICCIN for his Ramon y Cajal contract RYC-2014-16620 and to UPV for the grant PAID-06-18/SP20180172 The High-Resolution STEM data were recorded at the DME-UCA node of the ELECMI ICTS Spanish National Infrastructure for Electron Microscopy of Materials. JJC acknowledges financial support from MINECO/FEDER (Project MAT2017-97579-R). C. W. L. acknowledges the Visiting Researcher Fellowship from PRH 50.1 - ANP/FINEP Human Resources Program (Brazil).Gutiérrez-Tarriño, S.; Rojas-Buzo, S.; Lopes, CW.; Agostini, G.; Calvino, JJ.; Corma Canós, A.; Oña-Burgos, P. (2021). Cobalt nanoclusters coated with N-doped carbon for chemoselective nitroarene hydrogenation and tandem reactions in water. Green Chemistry. 23(12):4490-4501. https://doi.org/10.1039/d1gc00706h44904501231

    Cobalt metal-organic framework based on layered double nanosheets for enhanced electrocatalytic water oxidation in neutral media

    Get PDF
    A new cobalt metal-organic framework (2D-Co-MOF) based on well-defined layered double cores that are strongly connected by intermolecular bonds has been developed. Its 3D structure is held together by π-π stacking interactions between the labile pyridine ligands of the nanosheets. In aqueous solution, the axial pyridine ligands are exchanged by water molecules, producing a delamination of the material, where the individual double nanosheets preserve their structure. The original 3D layered structure can be restored by a solvothermal process with pyridine, so that the material shows a "memory effect" during the delamination-pillarization process. Electrochemical activation of a 2D-Co-MOF@Nafion-modified graphite electrode in aqueous solution improves the ionic migration and electron transfer across the film and promotes the formation of the electrocatalytically active cobalt species for the oxygen evolution reaction (OER). The so-activated 2D-Co-MOF@Nafion composite exhibits an outstanding electrocatalytic performance for the OER at neutral pH, with a TOF value (0.034 s-1 at an overpotential of 400 mV) and robustness superior to those reported for similar electrocatalysts under similar conditions. The particular topology of the delaminated nanosheets, with quite distant cobalt centers, precludes the direct coupling between the electrocatalytically active centers of the same sheet. On the other hand, the increase in ionic migration across the film during the electrochemical activation stage rules out the intersheet coupling between active cobalt centers, as this scenario would impair electrolyte permeation. Altogether, the most plausible mechanism for the O-O bond formation is the water nucleophilic attack to single Co(IV)-oxo or Co(III)-oxyl centers. Its high electrochemical efficiency suggests that the presence of nitrogen-containing aromatic equatorial ligands facilitates the water nucleophilic attack, as in the case of the highly efficient cobalt porphyrins

    A tandem process for in situ H2O2 formation coupled with benzyl alcohol oxidation using Pd-Au bimetallic catalysts

    Full text link
    [EN] Alcohol oxidation is one of the most important industrial organic reactions. Traditionally, the best-suited catalysts are Pd, Pt and Au supported nanoparticles. The research community has recently started developing strategies for synthesizing carbon-supported Pd/Au bimetallic nanoparticles (NPs), leading to higher activities and selectivities. However, the metallic active species in these catalysts are usually generated using sodium borohydride (NaBH4), which is not synthetically easy to reproduce. In fact, minor modifications in pH, concentration and/or other parameters have a prominent effect on the nature of the promoted material. In this work, a robust process involving dihydrogen flow (H2) at 200 °C as a reducing agent for synthesizing Pd/Au supported bimetallic materials was considered an alternative to the common pathway. The physicochemical properties of the materials derived from different reducing reagents and of varying composition ranges were studied using HR-TEM, XRD, CO chemisorption, and XPS. Their stability and activity were also tested for benzyl alcohol oxidation to benzaldehyde under mild reaction conditions (60 °C, water as the solvent, and PO2 = 1.5 bar). Notably, a catalyst from the hydrogen reduction process with a metal composition of 0.8%Pd¿0.2%Au/C consisting of bimetallic clusters (¿1.5 nm) proved to be the best material (C = 94%, S = 99%). Catalytic performances were strongly correlated with structural properties, such as nanoparticle size and distribution, which, in turn, were affected by the reduction step and the metal composition range. Finally, the influence of oxidants on benzyl alcohol oxidation has also been studied, along with the first approach for the tandem in situ formation of H2O2 coupled with alcohol oxidation.The authors are thankful for the financial support by the Spanish Government (RTI2018-096399-A-I00 and PGC2018-097277-B-I00 funded by MICINN/AEI/10.13039/501100011033) and Junta de Andalucia (P20 01027 and PYC 20 RE 060 UAL). The electron microscopy service of the UPV is acknowledged for their help in sample characterization.Martínez, JS.; Mazarío, J.; Gutiérrez-Tarriño, S.; Galdeano-Ruano, CP.; Gaona Miguélez, JA.; Domine, ME.; Oña-Burgos, P. (2022). A tandem process for in situ H2O2 formation coupled with benzyl alcohol oxidation using Pd-Au bimetallic catalysts. Dalton Transactions. 51(46):17567-17578. https://doi.org/10.1039/D2DT02831J1756717578514

    Understanding the potential-induced activation of a cobalt MOF electrocatalyst for the oxygen evolution reaction

    Get PDF
    Metal–organic frameworks (MOFs) are attractive porous materials for electrocatalytic applications associated with carbon-free energy storage and conversion. This type of material usually requires a post-treatment to be used as electrocatalyst. The present work comprehensively investigates the electrochemical activation of a cobalt-MOF@Nafion composite that produces outstanding electrocatalytic performance for the water oxidation reaction at neutral pH. A detailed electrochemical characterization reveals that the electroactivation of the composite requires the participation of the oxygen evolution reaction (OER) and leads to a significant increase in the electroactive population of cobalt centers. It is shown that an increase of the applied activation potential in the OER region results in a faster electroactivation of the Co-MOF without affecting the intrinsic electrocatalytic properties of the active cobalt centers, as evidenced by the unique linear correlation between the electrocatalytic OER current and the population of electroactive cobalt. In addition, at structural level, it is shown that the electrochemical activation causes the partial disruption of the Nafion adlayer, as well as morphological changes of the Co–MOF particles from a compact, rounded morphology, before electrochemical activation, to a more open and expanded structure, after electroactivation; with the concomitant increase of the number of surface–exposed cobalt centers. Interestingly, these cobalt centers retain their coordinative chemistry and their laminar distribution in the nanosheets at the nanoscale, which is consistent with the preservation of their intrinsic electrocatalytic activity after potential–induced activation. In this scenario, these results suggest that only the electroactivated cobalt centers with good accessibility to the electrolyte are electrochemically active. This work provides a better understanding of the processes and structural changes underlying the electrochemical activation at neutral pH of a Co–MOF for boosting the electrocatalytic water oxidation reaction9 página

    Cobalt Metal-Organic Framework based on two dinuclear secondary building units for electrocatalytic oxygen evolution

    Get PDF
    The synthesis of a new microporous metal-organic framework (MOF) based on two secondary building units, with dinuclear cobalt centers, has been developed. The employment of a well-defined cobalt cluster results in an unusual topology of the Co2-MOF, where one of the cobalt centers has three open coordination positions, which has no precedent in MOF materials based on cobalt. Adsorption isotherms have revealed that Co2-MOF is in the range of best CO2 adsorbents among the carbon materials, with very high CO2/CH4 selectivity. On the other hand, dispersion of Co2-MOF in an alcoholic solution of Nafion gives rise to a composite (Co2-MOF@Nafion) with great resistance to hydrolysis in aqueous media and good adherence to graphite electrodes. In fact, it exhibits high electrocatalytic activity and robustness for the oxygen evolution reaction (OER), with a turnover frequency number value superior to those reported for similar electrocatalysts. Overall, this work has provided the basis for the rational design of new cobalt OER catalysts and related materials employing well-defined metal clusters as directing agents of the MOF structure

    Developing and understanding Leaching-Resistant cobalt nanoparticles via N/P incorporation for liquid phase hydroformylation

    Get PDF
    The ultimate target in heterogeneous catalysis is the achievement of robust, resilient and highly efficient materials capable of resisting industrial reaction conditions. Pursuing that goal in liquid-phase hydroformylation poses a unique challenge due to carbon monoxide-induced metal carbonyl species formation, which is directly related to the formation of active homogeneous catalysts by metal leaching. Herein, supported heteroatom-incorporated (P and N) Co nanoparticles were developed to enhance the resistance compared with bare Co nanoparticles. The samples underwent characterization using operando XPS, XAS and HR electron microscopy. Overall, P- and N-doped catalysts increased reusability and suppressed leaching. Among the studied catalysts, the one with N as a dopant, CoNx@NC, presents excellent catalytic results for a Co-based catalyst, with a 94% conversion and a selectivity to aldehydes of 80% in only 7.5 h. Even under milder conditions, this catalyst outperformed existing benchmarks in Turnover Numbers (TON) and productivity. In addition, computational simulations provided atomistic insights, shedding light on the remarkable resistance of small Co clusters interacting with N-doped carbon patches

    Tailoring the electron density of cobalt oxide clusters to provide highly selective superoxide and peroxide species for aerobic cyclohexane oxidation

    Full text link
    [EN] The catalytic aerobic cyclohexane oxidation to cyclohexanol and cyclohexanone (KA oil) is an industrially relevant reaction. This work is focused on the synthesis of tailor-made catalysts based on the well-known Co4O4 core in order to successfully deal with cyclohexane oxidation reaction. The catalytic activity and selectivity of the synthesized catalysts can be correlated with the electronic density of the cluster, modulated by changing the organic ligands. This is not trivial in cyclohexane oxidation. Furthermore, the reaction mechanism is discussed on the basis of kinetics and spin trapping experiments, confirming that the electronic density of the catalyst has a clear influence on the distribution of the reaction products. In addition, in situ Raman spectroscopy was used to characterize the oxygen species formed on the cobalt cluster during the oxidation reaction. Altogether, it can be concluded that the catalyst with the highest oxidation potential promotes the formation of peroxide and superoxide species, which is the best way to oxidize inactivated CH bonds in alkanes. Finally, based on the results of the mechanistic studies, the contribution of these cobalt oxide clusters in each single reaction step of the whole process has been proposed.The authors thank Prof. A. Corma for his support and discussion on this work. S. G.-T. thanks MINECO for an FPU Ph.D. contract FPU16/02117. P. O.-B. is grateful for the financial support given by the Spanish Government (RTI2018-096399-A-I00). The authors would like to thank Ms Carmen Clemente and Ms Adelina Munoz for the ESI-MS and Raman measurements, respectively. The authors give additional thanks for the use of the analytical facilities at the X-Ray Unit of RIAIDT (Universidad de Santiago de Compostela).Gutiérrez-Tarriño, S.; Gaona Miguélez, JA.; Oña-Burgos, P. (2021). Tailoring the electron density of cobalt oxide clusters to provide highly selective superoxide and peroxide species for aerobic cyclohexane oxidation. Dalton Transactions. 50(42):15370-15379. https://doi.org/10.1039/d1dt02347kS1537015379504

    Enzyme-like activity of cobalt-MOF nanosheets for hydrogen peroxide electrochemical sensing

    Full text link
    [EN] Metal-organic frameworks (MOFs) are receiving increased attention as new functional nanomaterials for the development of electrochemical sensors. Herein, we develop an electrochemical platform for non-enzymatic hydrogen peroxide detection built with a composite of two-dimensional cobal t MOF nanosheets and Nafion (2D-Co-MOF@Nafion). The feasibility of the 2D-Co-MOF@Nafion composite as active material for high perfor-mance hydrogen peroxide sensor was investigated by usin g cyclic voltammetr y and chronoamperometry. Its voltammetric response reveals an efficient charge transport through the MOF composite, and rapid electron exchange between MOF and electrode. Notably, these MOF nanosheets exhibit enzyme-like activity for the non-common catalytic oxidation of hydrogen peroxide, leadin g to an electrochemical sensor with rapid quantitative detection, outstanding sensitivity, selectivity, stability, and durability at the desirable neutral pH. In particular, for a cobal t metal loading of 1.2 nanomol, the sensor yields amperometric H2O2 detection with characteristic electrocatalytic parameters ofima x = 5.7 mA cm(-2)andKM= 13 mM. Moreover, linear ranges of up to either 1 mM or 10 mM are achieved, with sensitivities as high as 570 +/-; 5 A cm(-2) mM(-1) or 395 +/- 10 A cm(-2) mM(-1) for the low and high concentration ranges, respectively. The particular coordination chemistr y of the MOF consisting of a regular arrangement of multiple Co(II) redox metal sites connected by appropriate organic ligands can provide inherent enzyme-mimicking properties, thereby explaining the higher oxidase-like activit y of the present MOF. This work raises the new idea of using two-dimensional cobalt-based MOFs as active nanozymes, offering exciting opportunities in the design of non-enzymatic electrochemical sensing devices.Acknowledgments Authors thank the financial support by the Spanish Government (RTI2018-096399-A-I00) and Junta de Andalucia (P20_01027 and PYC 20 RE 060 UAL).Portorreal-Bottier, A.; Gutiérrez-Tarriño, S.; Calvente, JJ.; Andreu, R.; Roldán, E.; Oña-Burgos, P.; Olloqui-Sariego, JL. (2022). Enzyme-like activity of cobalt-MOF nanosheets for hydrogen peroxide electrochemical sensing. Sensors and Actuators B Chemical. 368:1-9. https://doi.org/10.1016/j.snb.2022.1321291936
    corecore