1,280 research outputs found

    Transporte de explosivos químicos sometidos a procesos de infiltración y evaporación en suelos

    Get PDF
    Es necesario conocer el destino y el transporte de Compuestos Explosivos Relacionados ( para evaluar la contaminación potencial y para proteger los suministros de agua potable de contaminantes tóxicos, desarrollar estrategias de remediación, y facilitar la detección de explosivos enterrados. En este estudio se desarrollaron seis experimentos para evaluar los efectos de la infiltración y evaporación en el transporte de químicos explosivos. Estos experimentos se realizaron en una columna cilíndrica de 100 cm de longitud empacada con arena homogénea, instrumentada con sensores de presión de aire y agua y puntos de muestreo para monitorear las condiciones hidráulicas y perfiles de concentración de ERCs en el suelo. Esta investigación estudió el comportamiento del transporte de ERCs en el suelo bajo diferentes condiciones ambientales, cuando se sometieron a la advección (movimiento de fluidos). Los resultados mostraron que el transporte de TNT (2,4,6 trinitrotolueno) y DNT (2,4 dinitrotolueno) está influenciado por la disolución (fuente-agua), la volatilización (agua-aire), y las limitaciones en la transferencia de masa por adsorción (agua-suelo). El movimiento hacia abajo con el agua infiltrada por lo general es retardado por procesos de adsorción en los suelos y superficies de contacto aire-agua. El movimiento ascendente del agua durante la evaporación resultó en el movimiento ascendente de ERCs hacia la superficie sueloatmósfera. La evaporación del agua cerca de la superficie del suelo produjo un aumento de la concentración de ERC cerca de la superficie del suelo después de períodos prolongados de evaporación

    Glassy dynamics due to a trajectory phase transition in dissipative Rydberg gases

    Get PDF
    The physics of highly excited Rydberg atoms is governed by blockade or exclusion interactions that hinder the excitation of atoms in the proximity of a previously excited one. This leads to cooperative effects and a relaxation dynamics displaying space-time heterogeneity similar to what is observed in the relaxation of glass-forming systems. Here, we establish theoretically the existence of a glassy dynamical regime in an open Rydberg gas, associated with phase coexistence at a first-order transition in dynamical large deviation functions. This transition occurs between an active phase of low density in which dynamical processes take place on short timescales, and an inactive phase in which excited atoms are dense and the dynamics is highly arrested. We perform a numerically exact study and develop a mean-field approach that allows us to understand the mechanics of this phase transition. We show that radiative decay—which becomes experimentally relevant for long times—moves the system away from dynamical phase coexistence. Nevertheless, the dynamical phase transition persists and causes strong fluctuations in the observed dynamics

    Hydrotreating of Guaiacol and Acetic Acid Blends over Ni2P/ZSM-5 Catalysts: Elucidating Molecular Interactions during Bio-Oil Upgrading

    Get PDF
    [EN] Catalytic hydrodeoxygenation (HDO) is an effective technology for upgrading pyrolysis bio-oils. Although, in the past years, this process has been extensively studied, the relevance of the cross-reactivity between the numerous chemical components of bio-oil has been scarcely explored. However, molecular coupling can be beneficial for improving the bio-oil characteristics. With the aim of gaining a better understanding of these interactions, this work investigates the catalytic hydrodeoxygenation of mixtures of two typical components of pyrolysis bio-oils: guaiacol and acetic acid. The catalytic tests were carried out employing a bifunctional catalyst based on nickel phosphide (Ni2P) deposited over a commercial nanocrystalline ZSM-5 zeolite. The influence of both hydrogen availability and temperature on the activity and product distribution, was evaluated by carrying out reactions under different H2 pressures (40¿10 bar) and temperatures (between 260 and 300 °C). Using blends of both substrates, a partial inhibition of guaiacol HDO occurred because of the competence of acetic acid for the catalytic active sites. Nevertheless, positive interactions were also observed, mainly esterification and acylation reactions, which could enhance the bio-oil stability by reducing acidity, lowering the oxygen content, and increasing the chain length of the components. In this respect, formation of acetophenones, which can be further hydrogenated to yield ethyl phenols, is of particular interest for biorefinery applications. Increasing the temperature results in an increment of conversion but a decrease in the yield of fully deoxygenated molecules due to the production of higher proportion of catechol and related products. Additional experiments performed in the absence of hydrogen revealed that esterification reactions are homogeneously self-catalyzed by acetic acid, while acylation processes are mainly catalyzed by the acidic sites of the zeolitic support.The authors thank to the Spanish “Ministry of Economy and Competiveness” for their financial support through the project CATPLASBIO (CTQ2014-60209-R), as well as to the “Regional Government of Madrid” and European Structural Funds for the RESTOENE2 (S2013/MAE-2882) project
    corecore