129 research outputs found

    Vascular Cellular Adhesion Molecule-1 (VCAM-1) Expression in Mice Retinal Vessels Is Affected by Both Hyperglycemia and Hyperlipidemia

    Get PDF
    BACKGROUND: Inflammation has been proposed to be important in the pathogenesis of diabetic retinopathy. An early feature of inflammation is the release of cytokines leading to increased expression of endothelial activation markers such as vascular cellular adhesion molecule-1 (VCAM-1). Here we investigated the impact of diabetes and dyslipidemia on VCAM-1 expression in mouse retinal vessels, as well as the potential role of tumor necrosis factor-α (TNFα). METHODOLOGY/PRINCIPAL FINDINGS: Expression of VCAM-1 was examined by confocal immunofluorescence microscopy in vessels of wild type (wt), hyperlipidemic (ApoE(-/-)) and TNFα deficient (TNFα(-/-), ApoE(-/-)/TNFα(-/-)) mice. Eight weeks of streptozotocin-induced diabetes resulted in increased VCAM-1 in wt mice, predominantly in small vessels (<10 µm). Diabetic wt mice had higher total retinal TNFα, IL-6 and IL-1β mRNA than controls; as well as higher soluble VCAM-1 (sVCAM-1) in plasma. Lack of TNFα increased higher basal VCAM-1 protein and sVCAM-1, but failed to up-regulate IL-6 and IL-1β mRNA and VCAM-1 protein in response to diabetes. Basal VCAM-1 expression was higher in ApoE(-/-) than in wt mice and both VCAM-1 mRNA and protein levels were further increased by high fat diet. These changes correlated to plasma cholesterol, LDL- and HDL-cholesterol, but not to triglycerides levels. Diabetes, despite further increasing plasma cholesterol in ApoE(-/-) mice, had no effects on VCAM-1 protein expression or on sVCAM-1. However, it increased ICAM-1 mRNA expression in retinal vessels, which correlated to plasma triglycerides. CONCLUSIONS/SIGNIFICANCE: Hyperglycemia triggers an inflammatory response in the retina of normolipidemic mice and up-regulation of VCAM-1 in retinal vessels. Hypercholesterolemia effectively promotes VCAM-1 expression without evident stimulation of inflammation. Diabetes-induced endothelial activation in ApoE(-/-) mice seems driven by elevated plasma triglycerides but not by cholesterol. Results also suggest a complex role for TNFα in the regulation of VCAM-1 expression, being protective under basal conditions but pro-inflammatory in response to diabetes

    Transport spectroscopy of non-equilibrium many-particle spin states in self-assembled quantum dots

    Get PDF
    Self-assembled quantum dots (QDs) are prominent candidates for solid-state quantum information processing. For these systems, great progress has been made in addressing spin states by optical means. In this study, we introduce an all-electrical measurement technique to prepare and detect non-equilibrium many-particle spin states in an ensemble of self-assembled QDs at liquid helium temperature. The excitation spectra of the one- (QD hydrogen), two- (QD helium) and three- (QD lithium) electron configuration are shown and compared with calculations using the exact diagonalization method. An exchange splitting of 10 meV between the excited triplet and singlet spin states is observed in the QD helium spectrum. These experiments are a starting point for an all-electrical control of electron spin states in self-assembled QDs above liquid helium temperature

    Divergence exists in the subcellular distribution of intramuscular triglyceride in human skeletal muscle dependent on the choice of lipid dye.

    Get PDF
    Despite over 50 years of research, a comprehensive understanding of how intramuscular triglyceride (IMTG) is stored in skeletal muscle and its contribution as a fuel during exercise is lacking. Immunohistochemical techniques provide information on IMTG content and lipid droplet (LD) morphology on a fibre type and subcellular-specific basis, and the lipid dye Oil Red O (ORO) is commonly used to achieve this. BODIPY 493/503 (BODIPY) is an alternative lipid dye with lower background staining and narrower emission spectra. Here we provide the first quantitative comparison of BODIPY and ORO for investigating exercise-induced changes in IMTG content and LD morphology on a fibre type and subcellular-specific basis. Estimates of IMTG content were greater when using BODIPY, which was predominantly due to BODIPY detecting a larger number of LDs, compared to ORO. The subcellular distribution of intramuscular lipid was also dependent on the lipid dye used; ORO detects a greater proportion of IMTG in the periphery (5 μm below cell membrane) of the fibre, whereas IMTG content was higher in the central region using BODIPY. In response to 60 min moderate-intensity cycling exercise, IMTG content was reduced in both the peripheral (- 24%) and central region (- 29%) of type I fibres (P < 0.05) using BODIPY, whereas using ORO, IMTG content was only reduced in the peripheral region of type I fibres (- 31%; P < 0.05). As well as highlighting some methodological considerations herein, our investigation demonstrates that important differences exist between BODIPY and ORO for detecting and quantifying IMTG on a fibre type and subcellular-specific basis

    Metabolism before, during and after anaesthesia in colic and healthy horses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many colic horses are compromised due to the disease state and from hours of starvation and sometimes long trailer rides. This could influence their muscle energy reserves and affect the horses' ability to recover. The principal aim was to follow metabolic parameter before, during, and up to 7 days after anaesthesia in healthy horses and in horses undergoing abdominal surgery due to colic.</p> <p>Methods</p> <p>20 healthy horses given anaesthesia alone and 20 colic horses subjected to emergency abdominal surgery were anaesthetised for a mean of 228 minutes and 183 minutes respectively. Blood for analysis of haematology, electrolytes, cortisol, creatine kinase (CK), free fatty acids (FFA), glycerol, glucose and lactate was sampled before, during, and up to 7 days after anaesthesia. Arterial and venous blood gases were obtained before, during and up to 8 hours after recovery. Gluteal muscle biopsy specimens for biochemical analysis of muscle metabolites were obtained at start and end of anaesthesia and 1 h and 1 day after recovery.</p> <p>Results</p> <p>Plasma cortisol, FFA, glycerol, glucose, lactate and CK were elevated and serum phosphate and potassium were lower in colic horses before anaesthesia. Muscle adenosine triphosphate (ATP) content was low in several colic horses. Anaesthesia and surgery resulted in a decrease in plasma FFA and glycerol in colic horses whereas levels increased in healthy horses. During anaesthesia muscle and plasma lactate and plasma phosphate increased in both groups. In the colic horses plasma lactate increased further after recovery. Plasma FFA and glycerol increased 8 h after standing in the colic horses. In both groups, plasma concentrations of CK increased and serum phosphate decreased post-anaesthesia. On Day 7 most parameters were not different between groups. Colic horses lost on average 8% of their initial weight. Eleven colic horses completed the study.</p> <p>Conclusion</p> <p>Colic horses entered anaesthesia with altered metabolism and in a negative oxygen balance. Muscle oxygenation was insufficient during anaesthesia in both groups, although to a lesser extent in the healthy horses. The post-anaesthetic period was associated with increased lipolysis and weight loss in the colic horses, indicating a negative energy balance during the first week post-operatively.</p

    Co-occurrence of diabetes and hopelessness predicts adverse prognosis following percutaneous coronary intervention

    Get PDF
    We examined the impact of co-occurring diabetes and hopelessness on 3-year prognosis in percutaneous coronary intervention patients. Consecutive patients (n = 534) treated with the paclitaxel-eluting stent completed a set of questionnaires at baseline and were followed up for 3-year adverse clinical events. The incidence of 3-year death/non-fatal myocardial infarction was 3.5% in patients with no risk factors (neither hopelessness nor diabetes), 8.2% in patients with diabetes, 11.2% in patients with high hopelessness, and 15.9% in patients with both factors (p = 0.001). Patients with hopelessness (HR: 3.28; 95% CI: 1.49-7.23) and co-occurring diabetes and hopelessness (HR: 4.89; 95% CI: 1.86-12.85) were at increased risk of 3-year adverse clinical events compared to patients with no risk factors, whereas patients with diabetes were at a clinically relevant but not statistically significant risk (HR: 2.40; 95% CI: 0.82-7.01). These results remained, adjusting for baseline characteristics an

    BRST Quantization of Unimodular Gravity

    Get PDF
    We study the quantization of two versions of unimodular gravity, namely fully diffeomorphism-invariant unimodular gravity and unimodular gravity with fixed metric determinant, utilizing standard path integral approach. We derive the BRST symmetry of effective actions corresponding to several relevant gauge conditions. We observe that for some gauge conditions, the restricted gauge structure may complicate the formulation and effective actions, in particular, if the chosen gauge conditions involve the canonical momentum conjugate to the induced metric on the spatial hypersurface. The BRST symmetry is extended further to the finite field-dependent BRST transformation, in order to establish the mapping between different gauge conditions in each of the two versions of unimodular gravity.Peer reviewe

    Linking Yeast Gcn5p Catalytic Function and Gene Regulation Using a Quantitative, Graded Dominant Mutant Approach

    Get PDF
    Establishing causative links between protein functional domains and global gene regulation is critical for advancements in genetics, biotechnology, disease treatment, and systems biology. This task is challenging for multifunctional proteins when relying on traditional approaches such as gene deletions since they remove all domains simultaneously. Here, we describe a novel approach to extract quantitative, causative links by modulating the expression of a dominant mutant allele to create a function-specific competitive inhibition. Using the yeast histone acetyltransferase Gcn5p as a case study, we demonstrate the utility of this approach and (1) find evidence that Gcn5p is more involved in cell-wide gene repression, instead of the accepted gene activation associated with HATs, (2) identify previously unknown gene targets and interactions for Gcn5p-based acetylation, (3) quantify the strength of some Gcn5p-DNA associations, (4) demonstrate that this approach can be used to correctly identify canonical chromatin modifications, (5) establish the role of acetyltransferase activity on synthetic lethal interactions, and (6) identify new functional classes of genes regulated by Gcn5p acetyltransferase activity—all six of these major conclusions were unattainable by using standard gene knockout studies alone. We recommend that a graded dominant mutant approach be utilized in conjunction with a traditional knockout to study multifunctional proteins and generate higher-resolution data that more accurately probes protein domain function and influence
    corecore