4,415 research outputs found

    Modeling the Black Hole Excision Problem

    Full text link
    We analyze the excision strategy for simulating black holes. The problem is modeled by the propagation of quasi-linear waves in a 1-dimensional spatial region with timelike outer boundary, spacelike inner boundary and a horizon in between. Proofs of well-posed evolution and boundary algorithms for a second differential order treatment of the system are given for the separate pieces underlying the finite difference problem. These are implemented in a numerical code which gives accurate long term simulations of the quasi-linear excision problem. Excitation of long wavelength exponential modes, which are latent in the problem, are suppressed using conservation laws for the discretized system. The techniques are designed to apply directly to recent codes for the Einstein equations based upon the harmonic formulation.Comment: 21 pages, 14 postscript figures, minor contents updat

    Perturbation theorems for Hele-Shaw flows and their applications

    Full text link
    In this work, we give a perturbation theorem for strong polynomial solutions to the zero surface tension Hele-Shaw equation driven by injection or suction, so called the Polubarinova-Galin equation. This theorem enables us to explore properties of solutions with initial functions close to but are not polynomial. Applications of this theorem are given in the suction or injection case. In the former case, we show that if the initial domain is close to a disk, most of fluid will be sucked before the strong solution blows up. In the later case, we obtain precise large-time rescaling behaviors for large data to Hele-Shaw flows in terms of invariant Richardson complex moments. This rescaling behavior result generalizes a recent result regarding large-time rescaling behavior for small data in terms of moments. As a byproduct of a theorem in this paper, a short proof of existence and uniqueness of strong solutions to the Polubarinova-Galin equation is given.Comment: 25 page

    Mixed Hyperbolic - Second-Order Parabolic Formulations of General Relativity

    Full text link
    Two new formulations of general relativity are introduced. The first one is a parabolization of the Arnowitt, Deser, Misner (ADM) formulation and is derived by addition of combinations of the constraints and their derivatives to the right-hand-side of the ADM evolution equations. The desirable property of this modification is that it turns the surface of constraints into a local attractor because the constraint propagation equations become second-order parabolic independently of the gauge conditions employed. This system may be classified as mixed hyperbolic - second-order parabolic. The second formulation is a parabolization of the Kidder, Scheel, Teukolsky formulation and is a manifestly mixed strongly hyperbolic - second-order parabolic set of equations, bearing thus resemblance to the compressible Navier-Stokes equations. As a first test, a stability analysis of flat space is carried out and it is shown that the first modification exponentially damps and smoothes all constraint violating modes. These systems provide a new basis for constructing schemes for long-term and stable numerical integration of the Einstein field equations.Comment: 19 pages, two column, references added, two proofs of well-posedness added, content changed to agree with submitted version to PR

    The Initial-Boundary Value Problem in General Relativity

    Full text link
    In this article we summarize what is known about the initial-boundary value problem for general relativity and discuss present problems related to it.Comment: 11 pages, 2 figures. Contribution to a special volume for Mario Castagnino's seventy fifth birthda

    Constraint preserving boundary conditions for the Z4c formulation of general relativity

    Get PDF
    We discuss high order absorbing constraint preserving boundary conditions for the Z4c formulation of general relativity coupled to the moving puncture family of gauges. We are primarily concerned with the constraint preservation and absorption properties of these conditions. In the frozen coefficient approximation, with an appropriate first order pseudo-differential reduction, we show that the constraint subsystem is boundary stable on a four dimensional compact manifold. We analyze the remainder of the initial boundary value problem for a spherical reduction of the Z4c formulation with a particular choice of the puncture gauge. Numerical evidence for the efficacy of the conditions is presented in spherical symmetry.Comment: 18 pages, 8 figure

    Accurate black hole evolutions by fourth-order numerical relativity

    Full text link
    We present techniques for successfully performing numerical relativity simulations of binary black holes with fourth-order accuracy. Our simulations are based on a new coding framework which currently supports higher order finite differencing for the BSSN formulation of Einstein's equations, but which is designed to be readily applicable to a broad class of formulations. We apply our techniques to a standard set of numerical relativity test problems, demonstrating the fourth-order accuracy of the solutions. Finally we apply our approach to binary black hole head-on collisions, calculating the waveforms of gravitational radiation generated and demonstrating significant improvements in waveform accuracy over second-order methods with typically achievable numerical resolution.Comment: 17 pages, 25 figure

    Towards a gauge-polyvalent Numerical Relativity code

    Full text link
    The gauge polyvalence of a new numerical code is tested, both in harmonic-coordinate simulations (gauge-waves testbed) and in singularity-avoiding coordinates (simple Black-Hole simulations, either with or without shift). The code is built upon an adjusted first-order flux-conservative version of the Z4 formalism and a recently proposed family of robust finite-difference high-resolution algorithms. An outstanding result is the long-term evolution (up to 1000M) of a Black-Hole in normal coordinates (zero shift) without excision.Comment: to appear in Physical Review

    Adherence to artemether/lumefantrine treatment in children under real-life situations in rural Tanzania.

    Get PDF
    A follow-up study was conducted to determine the magnitude of and factors related to adherence to artemether/lumefantrine (ALu) treatment in rural settings in Tanzania. Children in five villages of Kilosa District treated at health facilities were followed-up at their homes on Day 7 after the first dose of ALu. For those found to be positive using a rapid diagnostic test for malaria and treated with ALu, their caretakers were interviewed on drug administration habits. In addition, capillary blood samples were collected on Day 7 to determine lumefantrine concentrations. The majority of children (392/444; 88.3%) were reported to have received all doses, in time. Non-adherence was due to untimeliness rather than missing doses and was highest for the last two doses. No significant difference was found between blood lumefantrine concentrations among adherent (median 286 nmol/l) and non-adherent [median 261 nmol/l; range 25 nmol/l (limit of quantification) to 9318 nmol/l]. Children from less poor households were more likely to adhere to therapy than the poor [odds ratio (OR)=2.45, 95% CI 1.35-4.45; adjusted OR=2.23, 95% CI 1.20-4.13]. The high reported rate of adherence to ALu in rural areas is encouraging and needs to be preserved to reduce the risk of emergence of resistant strains. The age-based dosage schedule and lack of adherence to ALu treatment guidelines by health facility staff may explain both the huge variability in observed lumefantrine concentrations and the lack of difference in concentrations between the two groups

    Constraint-preserving Sommerfeld conditions for the harmonic Einstein equations

    Get PDF
    The principle part of Einstein equations in the harmonic gauge consists of a constrained system of 10 curved space wave equations for the components of the space-time metric. A new formulation of constraint-preserving boundary conditions of the Sommerfeld type for such systems has recently been proposed. We implement these boundary conditions in a nonlinear 3D evolution code and test their accuracy.Comment: 16 pages, 17 figures, submitted to Phys. Rev.
    • 

    corecore