research

Mixed Hyperbolic - Second-Order Parabolic Formulations of General Relativity

Abstract

Two new formulations of general relativity are introduced. The first one is a parabolization of the Arnowitt, Deser, Misner (ADM) formulation and is derived by addition of combinations of the constraints and their derivatives to the right-hand-side of the ADM evolution equations. The desirable property of this modification is that it turns the surface of constraints into a local attractor because the constraint propagation equations become second-order parabolic independently of the gauge conditions employed. This system may be classified as mixed hyperbolic - second-order parabolic. The second formulation is a parabolization of the Kidder, Scheel, Teukolsky formulation and is a manifestly mixed strongly hyperbolic - second-order parabolic set of equations, bearing thus resemblance to the compressible Navier-Stokes equations. As a first test, a stability analysis of flat space is carried out and it is shown that the first modification exponentially damps and smoothes all constraint violating modes. These systems provide a new basis for constructing schemes for long-term and stable numerical integration of the Einstein field equations.Comment: 19 pages, two column, references added, two proofs of well-posedness added, content changed to agree with submitted version to PR

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020