9,561 research outputs found
The nature of turbulence in OMC1 at the star forming scale: observations and simulations
Aim: To study turbulence in the Orion Molecular Cloud (OMC1) by comparing
observed and simulated characteristics of the gas motions.
Method: Using a dataset of vibrationally excited H2 emission in OMC1
containing radial velocity and brightness which covers scales from 70AU to
30000AU, we present the transversal structure functions and the scaling of the
structure functions with their order. These are compared with the predictions
of two-dimensional projections of simulations of supersonic hydrodynamic
turbulence.
Results: The structure functions of OMC1 are not well represented by power
laws, but show clear deviations below 2000AU. However, using the technique of
extended self-similarity, power laws are recovered at scales down to 160AU. The
scaling of the higher order structure functions with order deviates from the
standard scaling for supersonic turbulence. This is explained as a selection
effect of preferentially observing the shocked part of the gas and the scaling
can be reproduced using line-of-sight integrated velocity data from subsets of
supersonic turbulence simulations. These subsets select regions of strong flow
convergence and high density associated with shock structure. Deviations of the
structure functions in OMC1 from power laws cannot however be reproduced in
simulations and remains an outstanding issue.Comment: 12 pages, 8 figures, accepted A&A. Revised in response to referee.
For higher resolution, see http://www.astro.phys.au.dk/~maikeng/sim_paper
Smooth potentials with prescribed boundary behaviour
This paper examines when it is possible to find a smooth potential on a domain with prescribed normal derivatives at the boundary. It is shown that this is always possible when is a Liapunov-Dini domain, and this restriction on is essential. An application concerning superharmonic extension is given
Gaia FGK Benchmark Stars: Effective temperatures and surface gravities
Large Galactic stellar surveys and new generations of stellar atmosphere
models and spectral line formation computations need to be subjected to careful
calibration and validation and to benchmark tests. We focus on cool stars and
aim at establishing a sample of 34 Gaia FGK Benchmark Stars with a range of
different metallicities. The goal was to determine the effective temperature
and the surface gravity independently from spectroscopy and atmospheric models
as far as possible. Fundamental determinations of Teff and logg were obtained
in a systematic way from a compilation of angular diameter measurements and
bolometric fluxes, and from a homogeneous mass determination based on stellar
evolution models. The derived parameters were compared to recent spectroscopic
and photometric determinations and to gravity estimates based on seismic data.
Most of the adopted diameter measurements have formal uncertainties around 1%,
which translate into uncertainties in effective temperature of 0.5%. The
measurements of bolometric flux seem to be accurate to 5% or better, which
contributes about 1% or less to the uncertainties in effective temperature. The
comparisons of parameter determinations with the literature show in general
good agreements with a few exceptions, most notably for the coolest stars and
for metal-poor stars. The sample consists of 29 FGK-type stars and 5 M giants.
Among the FGK stars, 21 have reliable parameters suitable for testing,
validation, or calibration purposes. For four stars, future adjustments of the
fundamental Teff are required, and for five stars the logg determination needs
to be improved. Future extensions of the sample of Gaia FGK Benchmark Stars are
required to fill gaps in parameter space, and we include a list of suggested
candidates.Comment: Accepted by A&A; 34 pages (printer format), 14 tables, 13 figures;
language correcte
Space-time evolution of Dirac wave packets
In this work we study the dynamics of free 3D relativistic Gaussian wave
packets with different spin polarization. We analyze the connection between the
symmetry of initial state and the dynamical characteristics of moving particle.
The corresponding solutions of Dirac equation having different types of
symmetry were evaluated analytically and numerically and after that the
electron probability densities, as well as, the spin densities were visualized.
The average values of velocity of the packet center and the average spin were
calculated analytically, and the parameters of transient Zitterbewegung in
different directions were obtained. These results can be useful for the
interpretation of future experiments with trapped ions.Comment: 10 pages, 7 figure
Spectral methods for the wave equation in second-order form
Current spectral simulations of Einstein's equations require writing the
equations in first-order form, potentially introducing instabilities and
inefficiencies. We present a new penalty method for pseudo-spectral evolutions
of second order in space wave equations. The penalties are constructed as
functions of Legendre polynomials and are added to the equations of motion
everywhere, not only on the boundaries. Using energy methods, we prove
semi-discrete stability of the new method for the scalar wave equation in flat
space and show how it can be applied to the scalar wave on a curved background.
Numerical results demonstrating stability and convergence for multi-domain
second-order scalar wave evolutions are also presented. This work provides a
foundation for treating Einstein's equations directly in second-order form by
spectral methods.Comment: 16 pages, 5 figure
The resultant on compact Riemann surfaces
We introduce a notion of resultant of two meromorphic functions on a compact
Riemann surface and demonstrate its usefulness in several respects. For
example, we exhibit several integral formulas for the resultant, relate it to
potential theory and give explicit formulas for the algebraic dependence
between two meromorphic functions on a compact Riemann surface. As a particular
application, the exponential transform of a quadrature domain in the complex
plane is expressed in terms of the resultant of two meromorphic functions on
the Schottky double of the domain.Comment: 44 page
Scaling Limits for Internal Aggregation Models with Multiple Sources
We study the scaling limits of three different aggregation models on Z^d:
internal DLA, in which particles perform random walks until reaching an
unoccupied site; the rotor-router model, in which particles perform
deterministic analogues of random walks; and the divisible sandpile, in which
each site distributes its excess mass equally among its neighbors. As the
lattice spacing tends to zero, all three models are found to have the same
scaling limit, which we describe as the solution to a certain PDE free boundary
problem in R^d. In particular, internal DLA has a deterministic scaling limit.
We find that the scaling limits are quadrature domains, which have arisen
independently in many fields such as potential theory and fluid dynamics. Our
results apply both to the case of multiple point sources and to the
Diaconis-Fulton smash sum of domains.Comment: 74 pages, 4 figures, to appear in J. d'Analyse Math. Main changes in
v2: added "least action principle" (Lemma 3.2); small corrections in section
4, and corrected the proof of Lemma 5.3 (Lemma 5.4 in the new version);
expanded section 6.
C and N Abundances in Stars At the Base of the Red Giant Branch in M5
We present an analysis of a large sample of moderate resolution Keck LRIS
spectra of subgiant (V \sim 17.2) and fainter stars in the Galactic globular
cluster M5 (NGC 5904) with the goal of deriving C and N abundances.
Star-to-star stochastic variations with significant range in both [C/Fe] and
[N/Fe] are found at all luminosities extending to the bottom of the RGB at M_V
\sim +3. Similar variations in CH appear to be present in the main sequence
turnoff spectra. There is no sign of a change in the behavior of C and N with
evolutionary stage over the full range in luminosity of the RGB and SGB. The C
and N abundances appear strongly anti-correlated, as would be expected from the
CN-cycle processing of stellar material. Yet the present stars are considerably
fainter than the RGB bump, the point at which deep mixing is believed to set
in. On this basis, while the observed abundance pattern is consistent with
proton capture nucleosynthesis, we infer that the site of the reactions is
likely not within the present sample, but rather in a population of more
massive (2 -- 5 M(Sun)) now defunct stars. The range of variation of the N
abundances is very large and the sum of C+N increases as C decreases. To
reproduce this requires the incorporation not only of CN but also of
ON-processed material. Furthermore, the existence of this correlation is quite
difficult to reproduce with an external mechanism such as ``pollution'' with
material processed in a more massive AGB star, which mechanism is fundamentally
stochastic in nature. We therefore suggest that although the internal mixing
hypothesis has serious flaws,new theoretical insights are needed and it should
not be ruled out yet. (abridged)Comment: Slightly updated version to conform to that accepted by the A
- …