9,561 research outputs found

    The nature of turbulence in OMC1 at the star forming scale: observations and simulations

    Full text link
    Aim: To study turbulence in the Orion Molecular Cloud (OMC1) by comparing observed and simulated characteristics of the gas motions. Method: Using a dataset of vibrationally excited H2 emission in OMC1 containing radial velocity and brightness which covers scales from 70AU to 30000AU, we present the transversal structure functions and the scaling of the structure functions with their order. These are compared with the predictions of two-dimensional projections of simulations of supersonic hydrodynamic turbulence. Results: The structure functions of OMC1 are not well represented by power laws, but show clear deviations below 2000AU. However, using the technique of extended self-similarity, power laws are recovered at scales down to 160AU. The scaling of the higher order structure functions with order deviates from the standard scaling for supersonic turbulence. This is explained as a selection effect of preferentially observing the shocked part of the gas and the scaling can be reproduced using line-of-sight integrated velocity data from subsets of supersonic turbulence simulations. These subsets select regions of strong flow convergence and high density associated with shock structure. Deviations of the structure functions in OMC1 from power laws cannot however be reproduced in simulations and remains an outstanding issue.Comment: 12 pages, 8 figures, accepted A&A. Revised in response to referee. For higher resolution, see http://www.astro.phys.au.dk/~maikeng/sim_paper

    Smooth potentials with prescribed boundary behaviour

    Get PDF
    This paper examines when it is possible to find a smooth potential on a C1C^{1} domain DD with prescribed normal derivatives at the boundary. It is shown that this is always possible when DD is a Liapunov-Dini domain, and this restriction on DD is essential. An application concerning C1C^{1} superharmonic extension is given

    Gaia FGK Benchmark Stars: Effective temperatures and surface gravities

    Full text link
    Large Galactic stellar surveys and new generations of stellar atmosphere models and spectral line formation computations need to be subjected to careful calibration and validation and to benchmark tests. We focus on cool stars and aim at establishing a sample of 34 Gaia FGK Benchmark Stars with a range of different metallicities. The goal was to determine the effective temperature and the surface gravity independently from spectroscopy and atmospheric models as far as possible. Fundamental determinations of Teff and logg were obtained in a systematic way from a compilation of angular diameter measurements and bolometric fluxes, and from a homogeneous mass determination based on stellar evolution models. The derived parameters were compared to recent spectroscopic and photometric determinations and to gravity estimates based on seismic data. Most of the adopted diameter measurements have formal uncertainties around 1%, which translate into uncertainties in effective temperature of 0.5%. The measurements of bolometric flux seem to be accurate to 5% or better, which contributes about 1% or less to the uncertainties in effective temperature. The comparisons of parameter determinations with the literature show in general good agreements with a few exceptions, most notably for the coolest stars and for metal-poor stars. The sample consists of 29 FGK-type stars and 5 M giants. Among the FGK stars, 21 have reliable parameters suitable for testing, validation, or calibration purposes. For four stars, future adjustments of the fundamental Teff are required, and for five stars the logg determination needs to be improved. Future extensions of the sample of Gaia FGK Benchmark Stars are required to fill gaps in parameter space, and we include a list of suggested candidates.Comment: Accepted by A&A; 34 pages (printer format), 14 tables, 13 figures; language correcte

    Space-time evolution of Dirac wave packets

    Full text link
    In this work we study the dynamics of free 3D relativistic Gaussian wave packets with different spin polarization. We analyze the connection between the symmetry of initial state and the dynamical characteristics of moving particle. The corresponding solutions of Dirac equation having different types of symmetry were evaluated analytically and numerically and after that the electron probability densities, as well as, the spin densities were visualized. The average values of velocity of the packet center and the average spin were calculated analytically, and the parameters of transient Zitterbewegung in different directions were obtained. These results can be useful for the interpretation of future experiments with trapped ions.Comment: 10 pages, 7 figure

    Spectral methods for the wave equation in second-order form

    Get PDF
    Current spectral simulations of Einstein's equations require writing the equations in first-order form, potentially introducing instabilities and inefficiencies. We present a new penalty method for pseudo-spectral evolutions of second order in space wave equations. The penalties are constructed as functions of Legendre polynomials and are added to the equations of motion everywhere, not only on the boundaries. Using energy methods, we prove semi-discrete stability of the new method for the scalar wave equation in flat space and show how it can be applied to the scalar wave on a curved background. Numerical results demonstrating stability and convergence for multi-domain second-order scalar wave evolutions are also presented. This work provides a foundation for treating Einstein's equations directly in second-order form by spectral methods.Comment: 16 pages, 5 figure

    The resultant on compact Riemann surfaces

    Full text link
    We introduce a notion of resultant of two meromorphic functions on a compact Riemann surface and demonstrate its usefulness in several respects. For example, we exhibit several integral formulas for the resultant, relate it to potential theory and give explicit formulas for the algebraic dependence between two meromorphic functions on a compact Riemann surface. As a particular application, the exponential transform of a quadrature domain in the complex plane is expressed in terms of the resultant of two meromorphic functions on the Schottky double of the domain.Comment: 44 page

    Scaling Limits for Internal Aggregation Models with Multiple Sources

    Full text link
    We study the scaling limits of three different aggregation models on Z^d: internal DLA, in which particles perform random walks until reaching an unoccupied site; the rotor-router model, in which particles perform deterministic analogues of random walks; and the divisible sandpile, in which each site distributes its excess mass equally among its neighbors. As the lattice spacing tends to zero, all three models are found to have the same scaling limit, which we describe as the solution to a certain PDE free boundary problem in R^d. In particular, internal DLA has a deterministic scaling limit. We find that the scaling limits are quadrature domains, which have arisen independently in many fields such as potential theory and fluid dynamics. Our results apply both to the case of multiple point sources and to the Diaconis-Fulton smash sum of domains.Comment: 74 pages, 4 figures, to appear in J. d'Analyse Math. Main changes in v2: added "least action principle" (Lemma 3.2); small corrections in section 4, and corrected the proof of Lemma 5.3 (Lemma 5.4 in the new version); expanded section 6.

    C and N Abundances in Stars At the Base of the Red Giant Branch in M5

    Get PDF
    We present an analysis of a large sample of moderate resolution Keck LRIS spectra of subgiant (V \sim 17.2) and fainter stars in the Galactic globular cluster M5 (NGC 5904) with the goal of deriving C and N abundances. Star-to-star stochastic variations with significant range in both [C/Fe] and [N/Fe] are found at all luminosities extending to the bottom of the RGB at M_V \sim +3. Similar variations in CH appear to be present in the main sequence turnoff spectra. There is no sign of a change in the behavior of C and N with evolutionary stage over the full range in luminosity of the RGB and SGB. The C and N abundances appear strongly anti-correlated, as would be expected from the CN-cycle processing of stellar material. Yet the present stars are considerably fainter than the RGB bump, the point at which deep mixing is believed to set in. On this basis, while the observed abundance pattern is consistent with proton capture nucleosynthesis, we infer that the site of the reactions is likely not within the present sample, but rather in a population of more massive (2 -- 5 M(Sun)) now defunct stars. The range of variation of the N abundances is very large and the sum of C+N increases as C decreases. To reproduce this requires the incorporation not only of CN but also of ON-processed material. Furthermore, the existence of this correlation is quite difficult to reproduce with an external mechanism such as ``pollution'' with material processed in a more massive AGB star, which mechanism is fundamentally stochastic in nature. We therefore suggest that although the internal mixing hypothesis has serious flaws,new theoretical insights are needed and it should not be ruled out yet. (abridged)Comment: Slightly updated version to conform to that accepted by the A
    • …
    corecore