289 research outputs found

    New insight into the physics of iron pnictides from optical and penetration depth data

    Full text link
    We report theoretical values for the unscreened plasma frequencies Omega_p of several Fe pnictides obtained from DFT based calculations within the LDA and compare them with experimental plasma frequencies obtained from reflectivity data. The sizable renormalization observed for all considered compounds points to the presence of many-body effects beyond the LDA. From the large empirical background dielectric constant of about 12-15, we estimate a large arsenic polarizability of about 9.5 +- 1.2 Angstroem^3 where the details depend on the polarizabilities of the remaining ions taken from the literature. This large polarizability can significantly reduce the value of the Coulomb repulsion U_d about 4 eV on iron known from iron oxides to a level of 2 eV or below. In general, this result points to rather strong polaronic effects as suggested by G.A. Sawatzky et al., in Refs. arXiv:0808.1390 and arXiv:0811.0214 (Berciu et al.). Possible consequences for the conditions of a formation of bipolarons are discussed, too. From the extrapolated muon spin rotation penetration depth data at T= 0 and the experimental Omega_p we estimate the total coupling constant lambda_tot for the el-boson interaction within the Eliashberg-theory adopting a single band approximation. For LaFeAsO_0.9F_0.1 a weak to intermediately strong coupling regime and a quasi-clean limit behaviour are found. For a pronounced multiband case we obtain a constraint for various intraband coupling constants which in principle allows for a sizable strong coupling in bands with either slow electrons or holes.Comment: 34 pages, 10 figures, submitted to New Journal of Physics (30.01.2009

    Image of the Energy Gap Anisotropy in the Vibrational Spectum of a High Temperature Superconductor

    Full text link
    We present a new method of determining the anisotropy of the gap function in layered high-Tc superconductors. Careful inelastic neutron scattering measurements at low temperature of the phonon dispersion curves in the (100) direction in La_(1.85)Sr_(.15)CuO_4 would determine whether the gap is predominately s-wave or d-wave. We also propose an experiment to determine the gap at each point on a quasi-two-dimensional Fermi surface.Comment: 12 pages + 2 figures (included

    Magnetism and Pairing in Hubbard Bilayers.

    Full text link
    We study the Hubbard model on a bilayer with repulsive on-site interactions, UU, in which fermions undergo both intra-plane (tt) and inter-plane (tzt_z) hopping. This situation is what one would expect in high-temperature superconductors such as YBCO, with two adjacent CuO2_2 planes. Magnetic and pairing properties of the system are investigated through Quantum Monte Carlo simulations for both half- and quarter-filled bands. We find that in all cases inter-planar pairing with dx2z2d_{x^2-z^2} symmetry is dominant over planar pairing with dx2y2d_{x^2-y^2} symmetry, and that for tzt_z large enough pair formation is possible through antiferromagnetic correlations. However, another mechanism is needed to make these pairs condense into a superconducting state at lower temperatures. We identify the temperature for pair formation with the spin gap crossover temperature. [Submitted to Phys. Rev. B]Comment: 7 pages, uuencoded self-unpacking PS file with text and figures

    Role of Umklapp Processes in Conductivity of Doped Two-Leg Ladders

    Full text link
    Recent conductivity measurements performed on the hole-doped two-leg ladder material Sr14xCaxCu24O41\mathrm{Sr_{14-x}Ca_xCu_{24}O_{41}} reveal an approximately linear power law regime in the c-axis DC resistivity as a function of temperature for x=11x=11. In this work, we employ a bosonic model to argue that umklapp processes are responsible for this feature and for the high spectral weight in the optical conductivity which occurs beyond the finite frequency Drude-like peak. Including quenched disorder in our model allows us to reproduce experimental conductivity and resistivity curves over a wide range of energies. We also point out the differences between the effect of umklapp processes in a single chain and in the two-leg ladder.Comment: 10 pages, 2 figure

    Many-body Effects in Angle-resolved Photoemission: Quasiparticle Energy and Lifetime of a Mo(110) Surface State

    Full text link
    In a high-resolution photoemission study of a Mo(110) surface state various contributions to the measured width and energy of the quasiparticle peak are investigated. Electron-phonon coupling, electron-electron interactions and scattering from defects are all identified mechanisms responsible for the finite lifetime of a valence photo-hole. The electron-phonon induced mass enhancement and rapid change of the photo-hole lifetime near the Fermi level are observed for the first time.Comment: RevTEX, 4 pages, 4 figures, to be published in PR

    Correlation between the residual resistance ratio and magnetoresistance in MgB2

    Full text link
    The resistivity and magnetoresistance in the normal state for bulk and thin-film MgB2 with different nominal compositions have been studied systematically. These samples show different temperature dependences of normal state resistivity and residual resistance ratios although their superconducting transition temperatures are nearly the same, except for the thin-film sample. The correlation between the residual resistance ratio (RRR) and the power law dependence of the low temperature resistivity, rho vs. T^c, indicates that the electron-phonon interaction is important. It is found that the magnetoresistance (MR) in the normal state scales well with the RRR, a0(MR) proportional to (RRR)^2.2 +/- 0.1 at 50 K. This accounts for the large difference in magnetoresistance reported by various groups, due to different defect scatterings in the samples.Comment: 10 pages, 3 figures, submitted to Phys. Rev. B (July 6, 2001; revised September 27, 2001); discussion of the need for excess Mg in processing and of the power law dependence of the low temperature resistivity added in response to referee's comment

    Change of the Ground State upon Hole Doping Unveiled by Ni Impurity in High-TcT_{\rm c} Cuprates

    Full text link
    The electronic ground state in high-TcT_{\rm c} cuprates where the superconducting state is suppressed by Ni substitution has been investigated in La2x_{2-x}Srx_xCu1y_{1-y}Niy_yO4_4 from the specific heat and muon spin relaxation measurements. It has been found that the ground state changes from a magnetically ordered state with the strong hole-trapping by Ni to a metallic state with the Kondo effect of Ni with increasing hole-concentration. Moreover, the analysis of the results has revealed that a phase separation into the magnetically ordered phase and the metallic phase occurs around the boundary of two phases.Comment: 11pages, 4 figure

    On the origin of the A1g_{1g} and B1g_{1g} electronic Raman scattering peaks in the superconducting state of YBa2_{2}Cu3_{3}O7δ_{7-\delta}

    Get PDF
    The electronic Raman scattering has been investigated in optimally oxygen doped YBa2_{2}Cu3_{3}O7δ_{7-\delta} single crystals as well as in crystals with non-magnetic, Zn, and magnetic, Ni, impurities. We found that the intensity of the A1g_{1g} peak is impurity independent and their energy to TcT_{c} ratio is almost constant (2Δ/kBTc52\Delta/k_{B}T_{c}\sim5). Moreover, the signal at the B1g_{1g} channel is completely smeared out when non-magnetic Zn impurities are present. These results are qualitatively interpreted in terms of the Zeyher and Greco's theory that relates the electronic Raman scattering in the A1g_{1g} and B1g_{1g} channels to \textit{d}-CDW and superconducting order parameters fluctuations, respectively.Comment: Submited to Phys. Rev. Let

    Probing the order parameter symmetry in the cuprate high temperature superconductors by SQUID microscopy

    Get PDF
    The orbital component of the order parameter in the cuprate high-Tc cuprate superconductors is now well established, in large part because of phase sensitive tests. Although it would be desirable to use such tests on other unconventional superconductors, there are a number of favorable factors associated with the properties of the cuprates, and a number of technical advances, that were required for these tests to be successful. In this review I will describe the development of phase sensitive pairing symmetry tests using SQUID microscopy, underlining the factors favoring these experiments in the cuprates and the technical advances that had to be made.Comment: 12 pages, 7 figure, invited review to be published in Comptes Rendus de l'Academie des Sciences (Comptes Rendus Physique
    corecore