56 research outputs found
Kinetic modelling of competition and depletion of shared miRNAs by competing endogenous RNAs
Non-conding RNAs play a key role in the post-transcriptional regulation of
mRNA translation and turnover in eukaryotes. miRNAs, in particular, interact
with their target RNAs through protein-mediated, sequence-specific binding,
giving rise to extended and highly heterogeneous miRNA-RNA interaction
networks. Within such networks, competition to bind miRNAs can generate an
effective positive coupling between their targets. Competing endogenous RNAs
(ceRNAs) can in turn regulate each other through miRNA-mediated crosstalk.
Albeit potentially weak, ceRNA interactions can occur both dynamically,
affecting e.g. the regulatory clock, and at stationarity, in which case ceRNA
networks as a whole can be implicated in the composition of the cell's
proteome. Many features of ceRNA interactions, including the conditions under
which they become significant, can be unraveled by mathematical and in silico
models. We review the understanding of the ceRNA effect obtained within such
frameworks, focusing on the methods employed to quantify it, its role in the
processing of gene expression noise, and how network topology can determine its
reach.Comment: review article, 29 pages, 7 figure
The Role of Muscle microRNAs in Repairing the Neuromuscular Junction
microRNAs have been implicated in mediating key aspects of skeletal muscle development and responses to diseases and injury. Recently, we demonstrated that a synaptically enriched microRNA, miR-206, functions to promote maintenance and repair of the neuromuscular junction (NMJ); in mutant mice lacking miR-206, reinnervation is impaired following nerve injury and loss of NMJs is accelerated in a mouse model of amyotrophic lateral sclerosis (ALS). Here, we asked whether other microRNAs play similar roles. One attractive candidate is miR-133b because it is in the same transcript that encodes miR-206. Like miR-206, miR-133b is concentrated near NMJs and induced after denervation. In miR-133b null mice, however, NMJ development is unaltered, reinnervation proceeds normally following nerve injury, and disease progression is unaffected in the SOD1(G93A) mouse model of ALS. To determine if miR-206 compensates for the loss of miR-133b, we generated mice lacking both microRNAs. The phenotype of these double mutants resembled that of miR-206 single mutants. Finally, we used conditional mutants of Dicer, an enzyme required for the maturation of most microRNAs, to generate mice in which microRNAs were depleted from skeletal muscle fibers postnatally, thus circumventing a requirement for microRNAs in embryonic muscle development. Reinnervation of muscle fibers following injury was impaired in these mice, but the defect was similar in magnitude to that observed in miR-206 mutants. Together, these results suggest that miR-206 is the major microRNA that regulates repair of the NMJ following nerve injury.National Institutes of Health (U.S.) (NIH grant R01AG032322)National Institute of Neurological Disorders and Stroke (U.S.) (NRSA Postdoctoral Fellowship from NINDS/NIH)Ruth K. Broad Biomedical Research Foundation (Fellowship)McGovern Institute for Brain Research at MIT (Poitras Center for Affective Disorders Research
Exome sequencing of pleuropulmonary blastoma reveals frequent biallelic loss of TP53 and two hits in DICER1 resulting in retention of 5p-derived miRNA hairpin loop sequences
Pleuropulmonary blastoma is a rare childhood malignancy of lung mesenchymal cells that can remain dormant as epithelial cysts or progress to high-grade sarcoma. Predisposing germline loss-of-function DICER1 variants have been described. We sought to uncover additional contributors through whole exome sequencing of 15 tumor/normal pairs, followed by targeted resequencing, miRNA analysis and immunohistochemical analysis of additional tumors. In addition to frequent biallelic loss of TP53 and mutations of NRAS or BRAF in some cases, each case had compound disruption of DICER1: a germline (12 cases) or somatic (3 cases) loss-of-function variant plus a somatic missense mutation in the RNase IIIb domain. 5p-Derived microRNA (miRNA) transcripts retained abnormal precursor miRNA loop sequences normally removed by DICER1. This work both defines a genetic interaction landscape with DICER1 mutation and provides evidence for alteration in miRNA transcripts as a consequence of DICER1 disruption in cancer
MicroRNA degradation by a conserved target RNA regulates animal behavior
International audiencemicroRNAs (miRNAs) repress target transcripts through partial complementarity. By contrast, highly complementary miRNA-binding sites within viral and artificially engineered transcripts induce miRNA degradation in vitro and in cell lines. Here, we show that a genome-encoded transcript harboring a near-perfect and deeply conserved miRNA-binding site for miR-29 controls zebrafish and mouse behavior. This transcript originated in basal vertebrates as a long noncoding RNA (lncRNA) and evolved to the protein-coding gene NREP in mammals, where the miR-29-binding site is located within the 3′ UTR. We show that the near-perfect miRNA site selectively triggers miR-29b destabilization through 3′ trimming and restricts its spatial expression in the cerebellum. Genetic disruption of the miR-29 site within mouse Nrep results in ectopic expression of cerebellar miR-29b and impaired coordination and motor learning. Thus, we demonstrate an endogenous target-RNA-directed miRNA degradation event and its requirement for animal behavio
Multiple mechanisms disrupt the let-7 microRNA family in neuroblastoma
Poor prognosis in neuroblastoma is associated with genetic amplification of MYCN. MYCN is itself a target of let-7, a tumour suppressor family of microRNAs implicated in numerous cancers. LIN28B, an inhibitor of let-7 biogenesis, is overexpressed in neuroblastoma and has been reported to regulate MYCN. Here we show, however, that LIN28B is dispensable in MYCN-amplified neuroblastoma cell lines, despite de-repression of let-7. We further demonstrate that MYCN messenger RNA levels in amplified disease are exceptionally high and sufficient to sponge let-7, which reconciles the dispensability of LIN28B. We found that genetic loss of let-7 is common in neuroblastoma, inversely associated with MYCN amplification, and independently associated with poor outcomes, providing a rationale for chromosomal loss patterns in neuroblastoma. We propose that let-7 disruption by LIN28B, MYCN sponging, or genetic loss is a unifying mechanism of neuroblastoma development with broad implications for cancer pathogenesis.United States. National Institutes of Health (R01GM107536)Alex's Lemonade Stand FoundationHoward Hughes Medical InstituteBoston Children's Hospital. Manton Center for Orphan Disease ResearchNational Institute of General Medical Sciences (U.S.) (T32GM007753
Sex Reversal in Zebrafish fancl Mutants Is Caused by Tp53-Mediated Germ Cell Apoptosis
The molecular genetic mechanisms of sex determination are not known for most vertebrates, including zebrafish. We identified a mutation in the zebrafish fancl gene that causes homozygous mutants to develop as fertile males due to female-to-male sex reversal. Fancl is a member of the Fanconi Anemia/BRCA DNA repair pathway. Experiments showed that zebrafish fancl was expressed in developing germ cells in bipotential gonads at the critical time of sexual fate determination. Caspase-3 immunoassays revealed increased germ cell apoptosis in fancl mutants that compromised oocyte survival. In the absence of oocytes surviving through meiosis, somatic cells of mutant gonads did not maintain expression of the ovary gene cyp19a1a and did not down-regulate expression of the early testis gene amh; consequently, gonads masculinized and became testes. Remarkably, results showed that the introduction of a tp53 (p53) mutation into fancl mutants rescued the sex-reversal phenotype by reducing germ cell apoptosis and, thus, allowed fancl mutants to become fertile females. Our results show that Fancl function is not essential for spermatogonia and oogonia to become sperm or mature oocytes, but instead suggest that Fancl function is involved in the survival of developing oocytes through meiosis. This work reveals that Tp53-mediated germ cell apoptosis induces sex reversal after the mutation of a DNA–repair pathway gene by compromising the survival of oocytes and suggests the existence of an oocyte-derived signal that biases gonad fate towards the female developmental pathway and thereby controls zebrafish sex determination
The PI3K/Akt1 pathway enhances steady-state levels of FANCL
Fanconi anemia hematopoietic stem cells display poor self-renewal capacity when subjected to a variety of cellular stress. This phenotype raises the question of whether the Fanconi anemia proteins are stabilized or recruited as part of a stress response and protect against stem cell loss. Here we provide evidence that FANCL, the E3 ubiquitin ligase of the Fanconi anemia pathway, is constitutively targeted for degradation by the proteasome. We confirm biochemically that FANCL is polyubiquitinated with Lys-48-linked chains. Evaluation of a series of N-terminal-deletion mutants showed that FANCL's E2-like fold may direct ubiquitination. In addition, our studies showed that FANCL is stabilized in a complex with axin1 when glycogen synthase kinase-3β is overexpressed. This result leads us to investigate the potential regulation of FANCL by upstream signaling pathways known to regulate glycogen synthase kinase-3β. We report that constitutively active, myristoylated-Akt increases FANCL protein level by reducing polyubiquitination of FANCL. Two-dimensional PAGE analysis shows that acidic forms of FANCL, some of which are phospho-FANCL, are not subject to polyubiquitination. These results indicate that a signal transduction pathway involved in self-renewal and survival of hematopoietic stem cells also functions to stabilize FANCL and suggests that FANCL participates directly in support of stem cell function
Alternative processing of its precursor is related to miR319 decreasing in melon plants exposed to cold
[EN] miRNAs are fundamental endogenous regulators of gene expression in higher organisms. miRNAs modulate multiple biological processes in plants. Consequently, miRNA accumulation is strictly controlled through miRNA precursor accumulation and processing. Members of the miRNA319 family are ancient ribo-regulators that are essential for plant development and stress responses and exhibit an unusual biogenesis that is characterized by multiple processing of their precursors. The significance of the high conservation of these non-canonical biogenesis pathways remains unknown. Here, we analyze data obtained by massive sRNA sequencing and 5 ' - RACE to explore the accumulation and infer the processing of members of the miR319 family in melon plants exposed to adverse environmental conditions. Sequence data showed that miR319c was down regulated in response to low temperature. However, the level of its precursor was increased by cold, indicating that miR319c accumulation is not related to the stem loop levels. Furthermore, we found that a decrease in miR319c was inversely correlated with the stable accumulation of an alternative miRNA (#miR319c) derived from multiple processing of the miR319c precursor. Interestingly, the alternative accumulation of miR319c and #miR319c was associated with an additional and non-canonical partial cleavage of the miR319c precursor during its loop-to-base-processing. Analysis of the transcriptional activity showed that miR319c negatively regulated the accumulation of HY5 via TCP2 in melon plants exposed to cold, supporting its involvement in the low temperature signaling pathway associated with anthocyanin biosynthesis. Our results provide new insights regarding the versatility of plant miRNA processing and the mechanisms regulating them as well as the hypothetical mechanism for the response to cold-induced stress in melon, which is based on the alternative regulation of miRNA biogenesis.Bustamante-González, AJ.; Marques Romero, MC.; Sanz-Carbonell, A.; Mulet, JM.; Gomez, GG. (2018). Alternative processing of its precursor is related to miR319 decreasing in melon plants exposed to cold. Scientific Reports. 8:1-13. https://doi.org/10.1038/s41598-018-34012-7S1138Borges, F. & Martienssen, R. A. The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16, 727–741 (2015).Shriram, V., Kumar, V., Devarumath, R. M., Khare, T. S. & Wani, S. H. MicroRNAs As Potential Targets for Abiotic Stress Tolerance in Plants. Front Plant Sci 7, 817 (2016).Xie, M., Zhang, S. & Yu, B. microRNA biogenesis, degradation and activity in plants. Cell Mol Life Sci 72, 87–99 (2015).Bologna, N. G., Schapire, A. L. & Palatnik, J. F. Processing of plant microRNA precursors. Brief Funct Genomics 12, 37–45 (2012).Achkar, N. P., Cambiagno, D. A. & Manavella, P. A. miRNA Biogenesis: A Dynamic Pathway. Trends Plant Sci 21, 1034–1044 (2016).Dong, Z., Han, M. H. & Fedoroff, N. The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc Natl Acad Sci USA 105, 9970–9975 (2008).Bologna, N. G. et al. Multiple RNA recognition patterns during microRNA biogenesis in plants. Genome Research 23, 1675–1689 (2013).Baranauskė, S. et al. Functional mapping of the plant small RNA methyltransferase: HEN1 physically interacts with HYL1 and DICER-LIKE 1 proteins. Nucleic Acids Res 43, 2802–2812 (2015).Zhang, S., Liu, Y. & Yu, B. New insights into pri-miRNA processing and accumulation in plants. WIREs. RNA 6, 533–545 (2015).Ren, G. et al. Regulation of miRNA abundance by RNA binding protein TOUGH in Arabidopsis. Proc Natl Acad Sci USA 109, 12817–12821 (2012).Cuperus, J. T., Fahlgren, N. & Carrington, J. C. Evolution and functional diversification of MIRNA genes. Plant Cell 23, 431–442 (2011).Zhang, W. et al. Multiple distinct small RNAs originate from the same microRNA precursors. Genome Biol 11(8), r81 (2010).Addo-Quaye, C. et al. Sliced microRNA targets and precise loop-first processing of MIR319 hairpins revealed by analysis of the Physcomitrella patens degradome. RNA 15, 2112–2121 (2009).Axtell, M. J., Snyder, J. A. & Bartel, D. P. Common functions for diverse small RNAs of land plants. Plant Cell 19, 1750–1769 (2007).Bologna, N. G., Mateos, J. L., Bresso, E. G. & Palatnik, J. F. A loop-to-base processing mechanism underlies the biogenesis of plant microRNAs miR319 and miR159. EMBO J 28, 3646–3656 (2009).Li, Y., Li, C., Ding, G. & Jin, Y. Evolution of MIR159/319 microRNA genes and their post-transcriptional regulatory link to siRNA pathways. BMC Evol Biol 11, 122 (2011).Sobkowiak, L., Karlowski, W., Jarmolowski, A. & Szweykowska-Kulinska, Z. Non-Canonical Processing of Arabidopsis pri-miR319a/b/c Generates Additional microRNAs to Target One RAP2.12 mRNA Isoform. Front Plant Sci 3, 46 (2012).Achard, P., Herr, A., Baulcombe, D. C. & Harberd, N. P. Modulation of floral development by a gibberellin-regulated microRNA. Development 131, 3357–3365 (2004).Allen, R. S. et al. Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc Natl Acad Sci USA 104, 16371–16376 (2007).Jones-Rhoades, M. W. & Bartel, D. P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14, 787–799 (2004).Palatnik, J. F. et al. Control of leaf morphogenesis by microRNAs. Nature 425, 257–263 (2003).Wang, S. T. et al. MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice (Oryza sativa). PLoS One 9(3), e91357 (2014).Thiebaut, F. et al. Regulation of miR319 during cold stress in sugarcane. Plant Cell Environ 35, 502–512 (2012).Sunkar, R. & Zhu, J. K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16, 2001–2019 (2004).Chen, H. et al. A comparison of the low temperature transcriptomes of two tomato genotypes that differ in freezing tolerance: Solanum lycopersicum and Solanum habrochaites. BMC Plant Biol 15, 132 (2015).Garcia-Mas, J. et al. The genome of melon (Cucumis melo L.). Proc Natl Acad Sci USA 109, 11872–11877 (2012).Nuñez-Palenius, H. G. et al. Melon fruits: genetic diversity, physiology, and biotechnology features. Crit Rev Biotechnol 28, 13–55 (2008).Gonzalez-Ibeas, D. et al. Analysis of the melon (Cucumis melo) small RNAome by high-throughput pyrosequencing. BMC Genomics 12, 393 (2011).Herranz, M. C., Navarro, J. A., Sommen, E. & Pallas, V. Comparative analysis among the small RNA populations of source, sink and conductive tissues in two different plant-virus pathosystems. BMC Genomics 16, 117 (2015).Sattar, S. et al. Expression of small RNA in Aphis gossypii and its potential role in the resistance interaction with melon. PLoS One 7(11), e48579 (2012).Dai, X. & Zhao, P. X. psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res. 39, W155–9 (2011).Palatnik, J. F. et al. Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Dev Cell 13, 115–125 (2007).He, Z., Zhao, X., Kong, F., Zuo, Z. & Liu, X. TCP2 positively regulates HY5/HYH and photomorphogenesis in Arabidopsis. J Exp Bot 67, 775–785 (2016).Lau, O. S. & Deng, X. W. Plant hormone signaling lightens up: integrators of light and hormones. Curr Opin Plant Biol 13, 571–577 (2010).Oyama, T., Shimura, Y. & Okada, K. The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev 11, 2983–2995 (1997).Ahmed, N. U., Park, J. I., Jung, H. J., Hur, Y. & Nou, I. S. Anthocyanin biosynthesis for cold and freezing stress tolerance and desirable color in Brassica rapa. Funct Integr Genomics 15, 383–394 (2015).Catalá, R., Medina, J. & Salinas, J. Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proc Natl Acad Sci USA 108, 16475–16480 (2011).Schulz, E., Tohge, T., Zuther, E., Fernie, A. R. & Hincha, D. K. Natural variation in flavonol and anthocyanin metabolism during cold acclimation in Arabidopsis thaliana accessions. Plant Cell Environ 38, 1658–1672 (2015).Perea-Resa, C., Rodríguez-Milla, M. A., Iniesto, E., Rubio, V. & Salinas, J. Prefoldins Negatively Regulate Cold Acclimation in Arabidopsis thaliana by Promoting Nuclear Proteasome-Mediated HY5 Degradation. Mol Plant 10, 791–804 (2017).Solfanelli, C., Poggi, A., Loreti, E., Alpi, A. & Perata, P. Sucrose-Specific Induction of the Anthocyanin Biosynthetic Pathway in Arabidopsis. Plant Physiol 140, 637–646 (2006).Reis, R. S., Eamens, A. L. & Waterhouse, P. M. Missing Pieces in the Puzzle of Plant MicroRNAs. Trends Plant Sci 20, 721–728 (2015).Kumar, R. Role of microRNAs in biotic and abiotic stress responses in crop plants. Appl Biochem Biotech 174, 93–115 (2014).Ma, C., Burd, S. & Lers, A. miR408 is involved in abiotic stress responses in Arabidopsis. Plant J 84, 169–187 (2015).Song, L., Axtell, M. J. & Fedoroff, N. V. RNA secondary structural determinants of miRNA precursor processing in Arabidopsis. Curr Biol 20, 37–41 (2010).Bracken, C. P. et al. Global analysis of the mammalian RNA degradome reveals widespread miRNA-dependent and miRNA-independent endonucleolytic cleavage. Nucleic Acids Res 39, 5658–5668 (2011).Gurtan, A. M., Lu, V., Bhutkar, A. & Sharp, P. A. In vivo structure-function analysis of human Dicer reveals directional processing of precursor miRNAs. RNA 18, 1116–1122 (2012).Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal 17, 10–12 (2011).Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq-2. Genome Biol 15, 550 (2014).Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11, 3–r25 (2010).Griffiths-Jones, S. miRBase: microRNA sequences and annotation. Current protocols in bioinformatics 12, 9 (2010).Li, H. et al. 1000 Genome Project Data Processing Subgroup The sequence alignment/map format & SAMtools. Bioinformatics 25, 2078–2079 (2009).Quinlan, A. & Hall, I. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).Llave, C., Xie, Z., Kasschau, K. D. & Carrington, J. C. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053–2056 (2002).Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10, 3–r25 (2009)
- …