474 research outputs found

    A magnetically induced quantum phase transition in holography

    Full text link
    We investigate quantum phase transitions in a 2+1 dimensional gauge theory at finite chemical potential χ\chi and magnetic field BB. The gravity dual is based on 4D N=2\mathcal{N}=2 Fayet-Iliopoulos gauged supergravity and the solutions we consider---that are constructed analytically---are extremal, dyonic, asymptotically AdS4AdS_4 black-branes with a nontrivial radial profile for the scalar field. We discover a line of second order fixed points at B=Bc(χ)B=B_c(\chi) between the dyonic black brane and an extremal "thermal gas" solution with a singularity of good-type, according to the acceptability criteria of Gubser [1]. The dual field theory is the ABJM theory [2] deformed by a triple trace operator Ί3\Phi^3 and placed at finite charge and magnetic field. This line of fixed points might be useful in studying the various strongly interacting quantum critical phenomena such as the ones proposed to underlie the cuprate superconductors. We also find curious similarities between the behaviour of the VeV ⟚Ί⟩\langle \Phi \rangle under B and that of the quark condensate in 2+1 dimensional NJL models.Comment: 33 pages, 7 figure

    Constraints on Conformal Windows from Holographic Duals

    Full text link
    We analyze a beta function with the analytic form of Novikov-Shifman-Vainshtein-Zakharov result in the five dimensional gravity-dilaton environment. We show how dilaton inherits poles and fixed points of such beta function through the zeros and points of extremum in its potential. Super Yang-Mills and supersymmetric QCD are studied in detail and Seiberg's electric-magnetic duality in the dilaton potential is explicitly demonstrated. Non-supersymmetric proposals of similar functional form are tested and new insights into the conformal window as well as determinations of scheme-independent value of the anomalous dimension at the fixed point are presented.Comment: Fig. 5b is corrected to match the discussion in the tex

    Construction and characterization of a multilayered gingival keratinocyte culture model : the TURK-U model

    Get PDF
    In construction of epithelial cells as multilayers, the cells are grown submerged to confluence on fibroblast-embedded collagen gels and, then, lifted to air to promote their stratification. We recently demonstrated that gingival epithelial cells form uniform monolayers on semi-permeable nitrocellulose membranes, supported with a semi-solid growth medium, which allows the cells to grow at an air-liquid-solid interface from the beginning of the culturing protocol. In this study, the aim was to further develop our previous model to form a multilayered gingival epithelial culture model. Two different epithelial cell lines (HaCaT from skin and HMK from gingiva) were used in all experiments. Both cell lines were grown first as monolayers for 3 days. After that, keratinocytes were trypsinized, counted and seeded on a sterile semi-permeable nitrocellulose membrane placed on the top of a semi-solid growth medium, forming an air-liquid-solid interface for the cells to grow. At days 1, 4, and 7, epithelial cells were fixed, embedded in paraffin, and sectioned for routine Hematoxylin-Eosin staining and immunohistochemistry for cytokeratin (Ck). At day 1, HMK cells grew as monolayers, while HaCaT cells stratified forming an epithelium with two to three layers. At day 4, a stratified epithelium in the HMK model had four to five layers and its proliferation continued up to day 7. HaCaT cells formed a dense and weakly proliferating epithelium with three to four layers of stratification at day 4 but the proliferation disappeared at day 7. At all days, both models were strongly positive for Ck5, Ck7, and Ck 19, and weakly positive for Ck10. Gingival epithelial cells stratify successfully on semi-permeable nitrocellulose membranes, supported with a semi-solid growth medium. This technique allows researchers to construct uniform gingival epithelial cell multilayers at an air-liquid-solid interface, without using collagen gels, resulting in a more reproducible method.Peer reviewe

    Improved Holographic QCD

    Full text link
    We provide a review to holographic models based on Einstein-dilaton gravity with a potential in 5 dimensions. Such theories, for a judicious choice of potential are very close to the physics of large-N YM theory both at zero and finite temperature. The zero temperature glueball spectra as well as their finite temperature thermodynamic functions compare well with lattice data. The model can be used to calculate transport coefficients, like bulk viscosity, the drag force and jet quenching parameters, relevant for the physics of the Quark-Gluon Plasma.Comment: LatEX, 65 pages, 28 figures, 9 Tables. Based on lectures given at several Schools. To appear in the proceedinds of the 5th Aegean School (Milos, Greece

    Marginal Deformations of Field Theories with AdS_4 Duals

    Full text link
    We generate new AdS_4 solutions of D=11 supergravity starting from AdS_4 x X_7 solutions where X_7 has U(1)^3 isometry. We consider examples where X_7 is weak G_2, Sasaki-Einstein or tri-Sasakian, corresponding to d=3 SCFTs with N=1,2 or 3 supersymmetry, respectively, and where the deformed solutions preserve N=1,2 or 1 supersymmetry, respectively. For the special cases when X_7 is M(3,2), Q(1,1,1) or N(1,1)_I we identify the exactly marginal deformation in the dual field theory. We also show that the volume of supersymmetric 5-cycles of N(1,1)_I agrees with the conformal dimension predicted by the baryons of the dual field theory.Comment: 28 pages, 2 figures; v2. typos correcte

    Supersymmetric defects in the Maldacena-Nunez background

    Full text link
    We find supersymmmetric configurations of a D5-brane probe in the Maldacena-Nunez background which are extended along one or two of the spatial directions of the gauge theory. These embeddings are worldvolume solitons which behave as codimension two or one defects in the gauge theory and preserve two of the four supersymmetries of the background.Comment: 37 pages, 2 figures, LaTeX; v2: references adde

    Marginal deformation of N=4 SYM and Penrose limits with continuum spectrum

    Full text link
    We study the Penrose limit about a null geodesic with 3 equal angular momenta in the recently obtained type IIB solution dual to an exactly marginal Îł\gamma-deformation of N=4 SYM. The resulting background has non-trivial NS 3-form flux as well as RR 5- and 3-form fluxes. We quantise the light-cone Green-Schwarz action and show that it exhibits a continuum spectrum. We show that this is related to the dynamics of a charged particle moving in a Landau plane with an extra interaction induced by the deformation. We interpret the results in the dual N=1 SCFT.Comment: 26 pages, 2 figures; v2: typos corrected, field theory interpretation extende

    HotPoint: hot spot prediction server for protein interfaces

    Get PDF
    The energy distribution along the protein–protein interface is not homogenous; certain residues contribute more to the binding free energy, called ‘hot spots’. Here, we present a web server, HotPoint, which predicts hot spots in protein interfaces using an empirical model. The empirical model incorporates a few simple rules consisting of occlusion from solvent and total knowledge-based pair potentials of residues. The prediction model is computationally efficient and achieves high accuracy of 70%. The input to the HotPoint server is a protein complex and two chain identifiers that form an interface. The server provides the hot spot prediction results, a table of residue properties and an interactive 3D visualization of the complex with hot spots highlighted. Results are also downloadable as text files. This web server can be used for analysis of any protein–protein interface which can be utilized by researchers working on binding sites characterization and rational design of small molecules for protein interactions. HotPoint is accessible at http://prism.ccbb.ku.edu.tr/hotpoint
    • 

    corecore