25 research outputs found

    The role of response mechanisms in determining reaction time performance: Piéron’s Law revisited

    Get PDF
    A response mechanism takes evaluations of the importance of potential actions and selects the most suitable. Response mechanism function is a nontrivial problem that has not received the attention it deserves within cognitive psychology. In this article, we make a case for the importance of considering response mechanism function as a constraint on cognitive processes and emphasized links with the wider problem of behavioral action selection. First, we show that, contrary to previous suggestions, a well–known model of the Stroop task (Cohen, Dunbar, & McClelland, 1990) relies on the response mechanism for a key feature of its results—the interference–facilitation asymmetry. Second, we examine a variety of response mechanisms (including that in the model of Cohen et al., 1990) and show that they all follow a law analogous to Piéron's law in relating their input to reaction time. In particular, this is true of a decision mechanism not designed to explain RT data but based on a proposed solution to the general problem of action selection and grounded in the neurobiology of the vertebrate basal ganglia. Finally, we show that the dynamics of simple artificial neurons also support a Piéron–like law

    Almost a decade of Cognitive Science at Sheffield

    Get PDF
    Sheffield was one of the first UK universities to introduce an undergraduate degree in Cognitive Science with an initial intake of students in 1990. The authors have been involved with teaching, admininistering, and developing the degree throughout the 1990s and most recently in overseeing its transformation into a degree entitled "Psychology and Cognitive Science". This paper provides a case-study of our experience in developing and co-ordinating Cognitive Science teaching at Sheffield. We review some of the particular problems we have faced, assess our varied attempts at solving them, and identify some unresolved issues which are likely to be faced by anyone seeking to provide training in Cognitive Science at an undergraduate level

    Emergent structured transition from variation to repetition in a biologically-plausible model of learning in basal ganglia.

    Get PDF
    Often, when animals encounter an unexpected sensory event, they transition from executing a variety of movements to repeating the movement(s) that may have caused the event. According to a recent theory of action discovery (Redgrave and Gurney, 2006), repetition allows the animal to represent those movements, and the outcome, as an action for later recruitment. The transition from variation to repetition often follows a non-random, structured, pattern. While the structure of the pattern can be explained by sophisticated cognitive mechanisms, simpler mechanisms based on dopaminergic modulation of basal ganglia (BG) activity are thought to underlie action discovery (Redgrave and Gurney, 2006). In this paper we ask the question: can simple BG-mediated mechanisms account for a structured transition from variation to repetition, or are more sophisticated cognitive mechanisms always necessary? To address this question, we present a computational model of BG-mediated biasing of behavior. In our model, unlike most other models of BG function, the BG biases behavior through modulation of cortical response to excitation; many possible movements are represented by the cortical area; and excitation to the cortical area is topographically-organized. We subject the model to simple reaching tasks, inspired by behavioral studies, in which a location to which to reach must be selected. Locations within a target area elicit a reinforcement signal. A structured transition from variation to repetition emerges from simple BG-mediated biasing of cortical response to excitation. We show how the structured pattern influences behavior in simple and complicated tasks. We also present analyses that describe the structured transition from variation to repetition due to BG-mediated biasing and from biasing that would be expected from a type of cognitive biasing, allowing us to compare behavior resulting from these types of biasing and make connections with future behavioral experiments

    Basal Ganglia

    Get PDF

    The basal ganglia viewed as an action selection device

    Get PDF
    The action selection problem describes the task of resolving conflicts between the different functional systems that can control behavior. This paper reviews the role of the basal ganglia (BG) summarising evidence that they function within the vertebrate brain architecture as a specialized action selection device. There is a rich connectivity within the BG whose function is not well understood. We outline a new computational model of BG intrinsic pathways which demonstrates that these circuits could allow the BG to implement clean switching between competing functional systems

    Empirically inspired simulated electro-mechanical model of the rat mystacial follicle-sinus complex

    Get PDF
    In whiskered animals, activity is evoked in the primary sensory afferent cells (trigeminal nerve) by mechanical stimulation of the whiskers. In some cell populations this activity is correlated well with continuous stimulus parameters such as whisker deflection magnitude, but in others it is observed to represent events such as whisker-stimulator contact or detachment. The transduction process is mediated by the mechanics of the whisker shaft and follicle-sinus complex (FSC), and the mechanics and electro-chemistry of mechanoreceptors within the FSC. An understanding of this transduction process and the nature of the primary neural codes generated is crucial for understanding more central sensory processing in the thalamus and cortex. However, the details of the peripheral processing are currently poorly understood. To overcome this deficiency in our knowledge, we constructed a simulated electro-mechanical model of the whisker-FSC-mechanoreceptor system in the rat and tested it against a variety of data drawn from the literature. The agreement was good enough to suggest that the model captures many of the key features of the peripheral whisker system in the rat

    A basal ganglia inspired model of action selection evaluated in a robotic survival task.

    Get PDF
    The basal ganglia system has been proposed as a possible neural substrate for action selection in the vertebrate brain. We describe a robotic implementation of a model of the basal ganglia and demonstrate the capacity of this system to generate adaptive switching between several acts when embedded in a robot that has to "survive" in a laboratory environment. A comparison between this brain-inspired selection mechanism and classical "winner-takes-all" selection highlights some adaptive properties specific to the model, such as avoidance of dithering and energy-saving. These properties derive, in part, from the capacity of simulated basal ganglia-thalamo-cortical loops to generate appropriate "behavioral persistence"

    The robot basal ganglia : action selection by an embedded model of the basal ganglia

    Get PDF
    Action selection is the task of resolving conflicts between multiple sensorimotor systems seeking access to the final common motor path. Recently,1,2 we proposed that the basal ganglia may act to provide a biological solution to the problem of selection. To test this notion we have implemented a high level computational model of intrinsic basal ganglia circuitry and its interactions with simulated thalamocortical connections.3,4 The computational model was then exposed to the rigors of `real world’ action selection by embedding it within the control architecture of a small mobile robot.5 In a mock foraging task, the robot was required to select appropriate actions under changing sensory and motivational conditions, thereby generating sequences of integrated behavior. Our results demonstrate: (i) the computational model of basal ganglia switches effectively between competing channels depending on the dynamics of relative input ‘salience’; (ii) its performance is enhanced by inclusion of anatomically inspired thalamocortical circuitry; (iii) in the robot, the model demonstrates appropriate and clean switching between different actions and is able to generate coherent sequences of behavior

    Ecological indicators to capture the effects of fishing on biodiversityand conservation status of marine ecosystems

    Get PDF
    IndiSeas (“Indicators for the Seas”) is a collaborative international working group that was established in2005 to evaluate the status of exploited marine ecosystems using a suite of indicators in a comparative framework. An initial shortlist of seven ecological indicators was selected to quantify the effects of fishing on the broader ecosystem using several criteria (i.e., ecological meaning, sensitivity to fishing, data avail-ability, management objectives and public awareness). The suite comprised: (i) the inverse coefficient of variation of total biomass of surveyed species, (ii) mean fish length in the surveyed community, (iii)mean maximum life span of surveyed fish species, (iv) proportion of predatory fish in the surveyed community, (v) proportion of under and moderately exploited stocks, (vi) total biomass of surveyed species,and (vii) mean trophic level of the landed catch. In line with the Nagoya Strategic Plan of the Convention on Biological Diversity (2011–2020), we extended this suite to emphasize the broader biodiversity and conservation risks in exploited marine ecosystems. We selected a subset of indicators from a list of empirically based candidate biodiversity indicators initially established based on ecological significance to complement the original IndiSeas indicators. The additional selected indicators were: (viii) mean intrinsic vulnerability index of the fish landed catch, (ix) proportion of non-declining exploited species in the surveyed community, (x) catch-based marine trophic index, and (xi) mean trophic level of the surveyed community. Despite the lack of data in some ecosystems, we also selected (xii) mean trophic level of the modelled community, and (xiii) proportion of discards in the fishery as extra indicators. These additional indicators were examined, along with the initial set of IndiSeas ecological indicators, to evaluate whether adding new biodiversity indicators provided useful additional information to refine our under-standing of the status evaluation of 29 exploited marine ecosystems. We used state and trend analyses,and we performed correlation, redundancy and multivariate tests. Existing developments in ecosystem-based fisheries management have largely focused on exploited species. Our study, using mostly fisheries independent survey-based indicators, highlights that biodiversity and conservation-based indicators are complementary to ecological indicators of fishing pressure. Thus, they should be used to provide additional information to evaluate the overall impact of fishing on exploited marine ecosystems

    Ecological indicators to capture the effects of fishing on biodiversityand conservation status of marine ecosystems

    Get PDF
    IndiSeas (“Indicators for the Seas”) is a collaborative international working group that was established in2005 to evaluate the status of exploited marine ecosystems using a suite of indicators in a comparative framework. An initial shortlist of seven ecological indicators was selected to quantify the effects of fishing on the broader ecosystem using several criteria (i.e., ecological meaning, sensitivity to fishing, data avail-ability, management objectives and public awareness). The suite comprised: (i) the inverse coefficient of variation of total biomass of surveyed species, (ii) mean fish length in the surveyed community, (iii)mean maximum life span of surveyed fish species, (iv) proportion of predatory fish in the surveyed community, (v) proportion of under and moderately exploited stocks, (vi) total biomass of surveyed species,and (vii) mean trophic level of the landed catch. In line with the Nagoya Strategic Plan of the Convention on Biological Diversity (2011–2020), we extended this suite to emphasize the broader biodiversity and conservation risks in exploited marine ecosystems. We selected a subset of indicators from a list of empirically based candidate biodiversity indicators initially established based on ecological significance to complement the original IndiSeas indicators. The additional selected indicators were: (viii) mean intrinsic vulnerability index of the fish landed catch, (ix) proportion of non-declining exploited species in the surveyed community, (x) catch-based marine trophic index, and (xi) mean trophic level of the surveyed community. Despite the lack of data in some ecosystems, we also selected (xii) mean trophic level of the modelled community, and (xiii) proportion of discards in the fishery as extra indicators. These additional indicators were examined, along with the initial set of IndiSeas ecological indicators, to evaluate whether adding new biodiversity indicators provided useful additional information to refine our under-standing of the status evaluation of 29 exploited marine ecosystems. We used state and trend analyses,and we performed correlation, redundancy and multivariate tests. Existing developments in ecosystem-based fisheries management have largely focused on exploited species. Our study, using mostly fisheries independent survey-based indicators, highlights that biodiversity and conservation-based indicators are complementary to ecological indicators of fishing pressure. Thus, they should be used to provide additional information to evaluate the overall impact of fishing on exploited marine ecosystems
    corecore