43 research outputs found

    Cloud Ice Properties: In Situ Measurement Challenges

    Get PDF
    Baumgardner D., S.J. Abel, D. Axisa, R. Cotton, J. Crosier, P. Field, C. Gurganus, A. Heymsfield, A. Korolev, M. Krämer, P. Lawson, G. McFarquhar, Z. Ulanowski, and J. Um, 'Cloud ice properties: in situ measurement challenges', Meteorological Monographs, Vol. 58, pp. 9.1–9.23, April 2017. The version of record is available online at doi: 10.1175/AMSMONOGRAPHS-D-16-0011.1.1 © 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).Understanding the formation and evolution of ice in clouds requires detailed information on the size, shape, mass and optical properties of individual cloud hydrometeors and their bulk properties over a broad range of atmospheric conditions. Since the 1960s, instrumentation and research aircraft have evolved providing increasingly more accurate and larger quantities of data about cloud particle properties. In this chapter we review the current status of electrical powered, in situ measurement systems with respect to their strengths and weaknesses and document their limitations and uncertainties. There remain many outstanding challenges. These are summarized and accompanied by recommendations for moving forward. through new developments that fill the remaining information gaps. Closing these gaps will remove the obstacles that continue to hinder our understanding of cloud processes in general and the evolution of ice in particular.Peer reviewe

    Gene–Environment Interactions at Nucleotide Resolution

    Get PDF
    Interactions among genes and the environment are a common source of phenotypic variation. To characterize the interplay between genetics and the environment at single nucleotide resolution, we quantified the genetic and environmental interactions of four quantitative trait nucleotides (QTN) that govern yeast sporulation efficiency. We first constructed a panel of strains that together carry all 32 possible combinations of the 4 QTN genotypes in 2 distinct genetic backgrounds. We then measured the sporulation efficiencies of these 32 strains across 8 controlled environments. This dataset shows that variation in sporulation efficiency is shaped largely by genetic and environmental interactions. We find clear examples of QTN:environment, QTN: background, and environment:background interactions. However, we find no QTN:QTN interactions that occur consistently across the entire dataset. Instead, interactions between QTN only occur under specific combinations of environment and genetic background. Thus, what might appear to be a QTN:QTN interaction in one background and environment becomes a more complex QTN:QTN:environment:background interaction when we consider the entire dataset as a whole. As a result, the phenotypic impact of a set of QTN alleles cannot be predicted from genotype alone. Our results instead demonstrate that the effects of QTN and their interactions are inextricably linked both to genetic background and to environmental variation

    Epistasis: Obstacle or Advantage for Mapping Complex Traits?

    Get PDF
    Identification of genetic loci in complex traits has focused largely on one-dimensional genome scans to search for associations between single markers and the phenotype. There is mounting evidence that locus interactions, or epistasis, are a crucial component of the genetic architecture of biologically relevant traits. However, epistasis is often viewed as a nuisance factor that reduces power for locus detection. Counter to expectations, recent work shows that fitting full models, instead of testing marker main effect and interaction components separately, in exhaustive multi-locus genome scans can have higher power to detect loci when epistasis is present than single-locus scans, and improvement that comes despite a much larger multiple testing alpha-adjustment in such searches. We demonstrate, both theoretically and via simulation, that the expected power to detect loci when fitting full models is often larger when these loci act epistatically than when they act additively. Additionally, we show that the power for single locus detection may be improved in cases of epistasis compared to the additive model. Our exploration of a two step model selection procedure shows that identifying the true model is difficult. However, this difficulty is certainly not exacerbated by the presence of epistasis, on the contrary, in some cases the presence of epistasis can aid in model selection. The impact of allele frequencies on both power and model selection is dramatic

    The study of atmospheric ice-nucleating particles via microfluidically generated droplets

    Get PDF
    Ice-nucleating particles (INPs) play a significant role in the climate and hydrological cycle by triggering ice formation in supercooled clouds, thereby causing precipitation and affecting cloud lifetimes and their radiative properties. However, despite their importance, INP often comprise only 1 in 10³–10⁶ ambient particles, making it difficult to ascertain and predict their type, source, and concentration. The typical techniques for quantifying INP concentrations tend to be highly labour-intensive, suffer from poor time resolution, or are limited in sensitivity to low concentrations. Here, we present the application of microfluidic devices to the study of atmospheric INPs via the simple and rapid production of monodisperse droplets and their subsequent freezing on a cold stage. This device offers the potential for the testing of INP concentrations in aqueous samples with high sensitivity and high counting statistics. Various INPs were tested for validation of the platform, including mineral dust and biological species, with results compared to literature values. We also describe a methodology for sampling atmospheric aerosol in a manner that minimises sampling biases and which is compatible with the microfluidic device. We present results for INP concentrations in air sampled during two field campaigns: (1) from a rural location in the UK and (2) during the UK’s annual Bonfire Night festival. These initial results will provide a route for deployment of the microfluidic platform for the study and quantification of INPs in upcoming field campaigns around the globe, while providing a benchmark for future lab-on-a-chip-based INP studies

    High-resolution mapping of quantitative trait loci for sternopleural bristle number in Drosophila melanogaster.

    No full text
    We have mapped quantitative trait loci (QTL) harboring naturally occurring allelic variation for Drosophila bristle number. Lines with high (H) and low (L) sternopleural bristle number were derived by artificial selection from a large base population. Isogenic H and L sublines were extracted from the selection lines, and populations of X and third chromosome H/L recombinant isogenic lines were constructed in the homozygous low line background. The polymorphic cytological locations of roo transposable elements provided a dense molecular marker map with an average intermarker distance of 4.5 cM. Two X chromosome and six chromosome 3 QTL affecting response to selection for sternopleural bristle number and three X chromosome and three chromosome 3 QTL affecting correlated response in abdominal bristle number were detected using a composite interval mapping method. The average effects of bristle number QTL were moderately large, and some had sex-specific effects. Epistasis between QTL affecting sternopleural bristle number was common, and interaction effects were large. Many of the intervals containing bristle number QTL coincided with those mapped in previous studies. However, resolution of bristle number QTL to the level of genetic loci is not trivial, because the genomic regions containing bristle number QTL often did not contain obvious candidate loci, and results of quantitative complementation tests to mutations at candidate loci affecting adult bristle number were ambiguous

    Genotype-environment interaction at quantitative trait loci affecting sensory bristle number in Drosophila melanogaster.

    No full text
    The magnitude of segregating variation for bristle number in Drosophila melanogaster exceeds that predicted from models of mutation-selection balance. To evaluate the hypothesis that genotype-environment interaction (GEI) maintains variation for bristle number in nature, we quantified the extent of GEI for abdominal and sternopleural bristles among 98 recombinant inbred lines, derived from two homozygous laboratory strains, in three temperature environments. There was considerable GEI for both bristle traits, which was mainly attributable to changes in rank order of line means. We conducted a genome-wide screen for quantitative trait loci (QTLs) affecting bristle number in each sex and temperature environment, using a dense (3.2-cM) marker map of polymorphic insertion sites of roo transposable elements. Nine sternopleural and 11 abdominal bristle number QTLs were detected. Significant GEI was exhibited by 14 QTLs, but there was heterogeneity among QTLs in their sensitivity to thermal and sexual environments. To further evaluate the hypothesis that GEI maintains variation for bristle number, we require estimates of allelic effects across environments at genetic loci affecting the traits. This level of resolution may be achievable for Drosophila bristle number because candidate loci affecting bristle development often map to the same location as bristle number QTLs

    Quantitative trait loci mapping of phenotypic plasticity and genotype–environment interactions in plant and insect performance

    No full text
    Community genetic studies generally ignore the plasticity of the functional traits through which the effect is passed from individuals to the associated community. However, the ability of organisms to be phenotypically plastic allows them to rapidly adapt to changing environments and plasticity is commonly observed across all taxa. Owing to the fitness benefits of phenotypic plasticity, evolutionary biologists are interested in its genetic basis, which could explain how phenotypic plasticity is involved in the evolution of species interactions. Two current ideas exist: (i) phenotypic plasticity is caused by environmentally sensitive loci associated with a phenotype; (ii) phenotypic plasticity is caused by regulatory genes that simply influence the plasticity of a phenotype. Here, we designed a quantitative trait loci (QTL) mapping experiment to locate QTL on the barley genome associated with barley performance when the environment varies in the presence of aphids, and the composition of the rhizosphere. We simultaneously mapped aphid performance across variable rhizosphere environments. We mapped main effects, QTL × environment interaction (QTL×E), and phenotypic plasticity (measured as the difference in mean trait values) for barley and aphid performance onto the barley genome using an interval mapping procedure. We found that QTL associated with phenotypic plasticity were co-located with main effect QTL and QTL×E. We also located phenotypic plasticity QTL that were located separately from main effect QTL. These results support both of the current ideas of how phenotypic plasticity is genetically based and provide an initial insight into the functional genetic basis of how phenotypically plastic traits may still be important sources of community genetic effects
    corecore